A

可以发现的是,次数的下界一定是使得 \(\frac{n(n + 1)}{2} \ge X\) 最小的 \(n\)。

稍加思考可以发现,只需要在某一时刻停一下一定能在下界的次数内跳到恰好 \(X\)。

因此最小的时间就是使得 \(\frac{n(n + 1)}{2} \ge X\) 最小的 \(n\),解方程可得 \(n_{min} = \lceil \frac{\sqrt{8x + 1} - 1}{2} \rceil\)

B

click here to read the solution

C

click here to read the solution

D

click here to read the solution

Atcoder ARC-070的更多相关文章

  1. 【题解】Atcoder ARC#90 F-Number of Digits

    Atcoder刷不动的每日一题... 首先注意到一个事实:随着 \(l, r\) 的增大,\(f(r) - f(l)\) 会越来越小.考虑暴力处理出小数据的情况,我们可以发现对于左端点 \(f(l) ...

  2. AtCoder ARC 076E - Connected?

    传送门:http://arc076.contest.atcoder.jp/tasks/arc076_c 平面上有一个R×C的网格,格点上可能写有数字1~N,每个数字出现两次.现在用一条曲线将一对相同的 ...

  3. AtCoder ARC 076D - Built?

    传送门:http://arc076.contest.atcoder.jp/tasks/arc076_b 本题是一个图论问题——Manhattan距离最小生成树(MST). 在一个平面网格上有n个格点, ...

  4. AtCoder ARC 082E - ConvexScore

    传送门:http://arc082.contest.atcoder.jp/tasks/arc082_c 本题是一个平面几何问题. 在平面直角坐标系中有一个n元点集U={Ai(xi,yi)|1≤i≤n} ...

  5. Atcoder ARC 082C/D

    C - Together 传送门:http://arc082.contest.atcoder.jp/tasks/arc082_a 本题是一个数学问题. 有一个长度为n的自然数列a[1..n],对于每一 ...

  6. 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)

    题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...

  7. 【题解】Atcoder ARC#96 F-Sweet Alchemy

    首先,我们发现每一个节点所选择的次数不好直接算,因为要求一个节点被选择的次数大于等于父亲被选择的次数,且又要小于等于父亲被选择的次数 \(+D\).既然如此,考虑一棵差分的树,规定每一个节点被选择的次 ...

  8. AtCoder ARC 090 E / AtCoder 3883: Avoiding Collision

    题目传送门:ARC090E. 题意简述: 给定一张有 \(N\) 个点 \(M\) 条边的无向图.每条边有相应的边权,边权是正整数. 小 A 要从结点 \(S\) 走到结点 \(T\) ,而小 B 则 ...

  9. 【题解】Atcoder ARC#67 F-Yakiniku Restaurants

    觉得我的解法好简单,好优美啊QAQ 首先想想暴力怎么办.暴力的话,我们就枚举左右端点,然后显然每张购物券都取最大的值.这样的复杂度是 \(O(n ^{2} m)\) 的.但是这样明显能够感觉到我们重复 ...

  10. 【题解】Atcoder ARC#85 E-MUL

    ……没啥可说的.最大权闭合子图,跑下dinic就好了…… #include <bits/stdc++.h> using namespace std; #define maxn 500000 ...

随机推荐

  1. 【Web前端】css属性cursor注意事项

    注意使用cursor的url时url的括号后面必须+   ,auto: 错误示范:cursor:url('../picture/head.cur'); 正确示范:cursor: url(". ...

  2. 在linux(deepin)系统下查看当前ip地址与用户名

    在linux(deepin)系统下查看当前ip地址与用户名 查看当前ip地址 方式一: hostname -I 方式二: ifconfig -a 如下图所示: 其中192.168.11.66即为当前系 ...

  3. netty系列之:netty对SOCKS协议的支持

    目录 简介 SocksMessage Socks4Message Socks5Message 总结 简介 SOCKS是一个优秀的网络协议,主要被用来做代理,它的两个主要版本是SOCKS4和SOCKS5 ...

  4. CentOS8.2安装docker

    1:安装docker前准备docker配置仓库(安装yum-utils是提供一个yum-config-manager单元,同时安装的device-mapper-persistent-data和lvm2 ...

  5. 初识python: xlsxwriter 将数据写入Excel

    使用 xlsxwriter 模块将数据写入excel . #!/user/bin env python # author:Simple-Sir # time:2020/9/24 12:51 # 使用 ...

  6. maven pom.xml 的 spring-boot-maven-plugin 红色报错 解决

    解决方法,添加对应的spring boot 版本号即可

  7. sql优化--尽可能少用like

    1.前言 like非常消耗性能,当搜索 like '%%' 的时候,仍然会对比全表信息后查找相关的数据, 2.如何优化? 使用动态标签 <if test="nickName != '% ...

  8. java调用redis的多种方式与心得

    心得: /** * 心得: * 1.连接方式主要有:直连同步,直连事务,直连管道,直连管道事务,分布式直连同步,分布式直连管道, * 分布式连接池同步,分布式连接池管道:普通连接池同步,普通连接池管道 ...

  9. linux 【阿里云服务器】 配置 redis 的正确流程

    1.前言 我的域名备案前几天通过了,这篇随笔完整的记录 redis 的安装流程 与各种 问题 的 具体解决方案. 2.操作[跟着步骤来] (1)指令cd /usr/local 进入local文件夹里面 ...

  10. Centos7 文件修改详情

    Centos常规修改信息 记录文件在系统中的意义 /etc/locale.conf ---修改字符集文件 /etc/profile ---修改环境变量