P4334 [COI2007] Policija

题意

一个无重边的无向图,每次询问删掉一条边或删掉一个点后两个点是否联通。

思路

连通性问题,我们可以考虑使用广义圆方树解决。

  1. 对于删掉一个点的情况:

我们先跑 tarjan 建出圆方树。如何判断两点在删去一个点后在树上的连通性?当且仅当被删去的点在两点间的路径上。根据圆方树的性质,如果被删点在一个点双连通分量中,它是符合上面的判断条件的。

所以,我们只需要建出圆方树,判断这个点是否在询问的两点间的路径上就行了。

  1. 对于删掉一条边的情况:

考虑我们建出来的广义圆方树是一种怎样的形态。它一定是圆方点交错的形式。换句话说,一条边若不在点双连通分量内,它就会变成一个方点,并连接其原来的两个点。

换句话说,我们把一条边转化成了一个点。于是我们就可以像上面处理点一样处理了。

实现

判断一个点是否在两点路径上,我们可以用树剖实现。具体来讲,在跳LCA的过程中判断被删点是否在起终点之间,我们用链首和深度判断即可。

由于题目查询边的给出方式约束,我们可以用 map 实现查询边是否在点双内。代码中,minmax 函数为 C++11 语法,其返回值为一个排好序后的 pair 。

整体时间复杂度为 \(O(n+q(\log n+\log m))\)

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#include<cmath>
#include<map>
using namespace std;
inline int read(){
int w=0,x=0;char c=getchar();
while(!isdigit(c))w|=c=='-',c=getchar();
while(isdigit(c))x=(x<<3)+(x<<1)+(c^48),c=getchar();
return w?-x:x;
}
namespace star
{
const int maxn=2e5+10,maxm=5e5+10;
typedef pair<int,int> pii;
int n,m;
struct gragh{
int ecnt,head[maxn],to[maxm<<1],nxt[maxm<<1];
inline void addedge(int a,int b){
to[++ecnt]=b,nxt[ecnt]=head[a],head[a]=ecnt;
to[++ecnt]=a,nxt[ecnt]=head[b],head[b]=ecnt;
}
}G1,G2;
int tot,cnt,st[maxn],dfn[maxn],low[maxn];
map<pii,int> mp;
void tarjan(int x,int f){
dfn[x]=low[x]=++tot;
st[++st[0]]=x;
for(int i=G1.head[x];i;i=G1.nxt[i]){
int u=G1.to[i];
if(u==f)continue;
if(!dfn[u]){
tarjan(u,x);
low[x]=min(low[x],low[u]);
if(low[u]>=dfn[x]){
cnt++;
if(low[u]>dfn[x]) mp.insert(make_pair(minmax(u,x),cnt));
G2.addedge(cnt,x);
int now=-1;
while(now^u)
now=st[st[0]--],G2.addedge(now,cnt);
}
}else low[x]=min(low[x],dfn[u]);
}
}
int fa[maxn],dep[maxn],top[maxn],son[maxn],siz[maxn];
void dfs1(int x,int f){
fa[x]=f,dep[x]=dep[f]+1;siz[x]=1;
for(int i=G2.head[x];i;i=G2.nxt[i]){
int u=G2.to[i];
if(u==f)continue;
dfs1(u,x);
siz[x]+=siz[u];
if(siz[u]>siz[son[x]])son[x]=u;
}
}
void dfs2(int x,int topf){
top[x]=topf;
if(!son[x]) return;
dfs2(son[x],topf);
for(int i=G2.head[x];i;i=G2.nxt[i]){
int u=G2.to[i];
if(u==fa[x] or u==son[x]) continue;
dfs2(u,u);
}
}
inline bool LCA(int x,int y,int z){
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]])swap(x,y);
if(top[x]==top[z] and dep[z]<=dep[x]) return 1;
x=fa[top[x]];
}
if(dep[x]<dep[y])swap(x,y);
if(top[x]==top[z] and dep[z]>=dep[y] and dep[z]<=dep[x]) return 1;
return 0;
}
inline void work(){
n=cnt=read(),m=read();
for(int i=1;i<=m;i++) G1.addedge(read(),read());
tarjan(1,0);
dfs1(1,0);
dfs2(1,1);
int Q=read();
while(Q--)
if(read()==1){
int x=read(),y=read();
map<pii,int>::iterator it=mp.find(minmax(read(),read()));
if(it==mp.end()) puts("yes");
else puts(LCA(x,y,(*it).second)?"no":"yes");
}else{
int x=read(),y=read(),z=read();
puts(LCA(x,y,z)?"no":"yes");
}
}
}
signed main(){
star::work();
return 0;
}

P4334 [COI2007] Policija的更多相关文章

  1. [hdu P4334] Trouble

    [hdu P4334] Trouble Hassan is in trouble. His mathematics teacher has given him a very difficult pro ...

  2. 洛谷 P1823 [COI2007] Patrik 音乐会的等待

    洛谷 P1823 [COI2007] Patrik 音乐会的等待 洛谷传送门 题目描述 N个人正在排队进入一个音乐会.人们等得很无聊,于是他们开始转来转去,想在队伍里寻找自己的熟人.队列中任意两个人A ...

  3. 洛谷 P1823 [COI2007] Patrik 音乐会的等待 题解

    P1823 [COI2007] Patrik 音乐会的等待 题目描述 N个人正在排队进入一个音乐会.人们等得很无聊,于是他们开始转来转去,想在队伍里寻找自己的熟人.队列中任意两个人A和B,如果他们是相 ...

  4. 洛谷P1823 [COI2007] Patrik 音乐会的等待(单调栈+二分查找)

    洛谷P1823 [COI2007] Patrik 音乐会的等待(单调栈+二分查找) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1333275 这个题不是很 ...

  5. [COI2007] Sabor

    下面给出这道一脸不可做的题的鬼畜性质: 1)对于一个点来说,其归属状态是确定的:走不到.A党或B党 .(黑白格染色) 方便起见,将包含所有不可达的点的极小矩形向外扩展一圈,设为矩形M. 2)矩形M的最 ...

  6. P1823 [COI2007] Patrik 音乐会的等待 单调栈 洛谷luogu

    题目描述 N个人正在排队进入一个音乐会.人们等得很无聊,于是他们开始转来转去,想在队伍里寻找自己的熟人.队列中任意两个人A和B,如果他们是相邻或他们之间没有人比A或B高,那么他们是可以互相看得见的. ...

  7. 【洛谷】【单调栈】P4333 [COI2007] Patrik

    --接上一篇题解,[洛谷][单调栈]P1823音乐会的等待 关于题目大意在上一篇题解里已经说清楚了,这里不再多阐述 想看题目->戳这里 [算法分析:] 在对元素a进行判断时,如果它与栈顶元素相等 ...

  8. 洛谷P1823 [COI2007] Patrik 音乐会的等待

    https://www.luogu.org/problemnew/show/P1823 自己只会一个log的 设取的人的位置分别是l,r(l<r) 这个做法大概是考虑枚举r,设法对于每个r求出有 ...

  9. [COI2007] Patrik 音乐会的等待 (单调栈,模拟)

    题目描述 N个人正在排队进入一个音乐会.人们等得很无聊,于是他们开始转来转去,想在队伍里寻找自己的熟人.队列中任意两个人A和B,如果他们是相邻或他们之间没有人比A或B高,那么他们是可以互相看得见的. ...

随机推荐

  1. parted(分区工具)

    要支持大容量(18EB),需改用  gpt 分区模式可以有128个主分区 [root@server0 /]# lsblk [root@server0 /]# parted /dev/vdb (part ...

  2. Pytest测试框架入门到精通(一)

    Python测试框架之前一直用的是unittest+HTMLTestRunner,听到有人说Pytest很好用,所以这边给大家介绍一下Pytest的使用 pytest是一个非常成熟的全功能的Pytho ...

  3. 【Azure 机器人】微软Azure Bot 编辑器系列(6) : 添加LUIS,理解自然语言 (The Bot Framework Composer tutorials)

    欢迎来到微软机器人编辑器使用教程,从这里开始,创建一个简单的机器人. 在该系列文章中,每一篇都将通过添加更多的功能来构建机器人.当完成教程中的全部内容后,你将成功的创建一个天气机器人(Weather ...

  4. 【模板】 RMQ求区间最值

    RMQ RMQ简单来说就是求区间的最大值(最小值) 核心算法:动态规划 RMQ(以下以求最大值为例) F[i,j]表示 从 i 开始 到i+2j -1这个区间中的最大值 状态转移方程 F[i,j]=m ...

  5. some requirement checks failed

    1.执行安装数据库软件时报错(./runInstaller): 解决:(1)su - root       执行: x host+    然后 su - oracle    执行:./runIstal ...

  6. ClickHouse学习系列之五【系统库system说明】

    背景 之前介绍过ClickHouse相关的系列文章,现在ClickHouse已经能正常使用起来了,包括副本和分片.因为ClickHouse已经可以提供服务了,现在需要关心的就是服务期间该数据库的各项性 ...

  7. 环境安装——JDK安装

    @ 目录 开发环境-JDK安装 1. 下载地址 2. 安装JDK 3. 配置系统环境 开发环境-JDK安装 无论在我们开始学习Java或者入职第一天安装环境,这个你都是必备滴!下面是下载和安装JDK的 ...

  8. 安装nodejs版本模块报错notsup Unsupported platform for n

    使用npm install -g n报错 如果出现npm ERR! notsup Unsupported platform for n@6.7.0: wanted {"os":&q ...

  9. Docker入门与进阶(下)

    Docker入门与进阶(下) 作者 刘畅 时间 2020-11-12 实验主机配置 系统centos7.5 主机名 ip 配置 应用 harbor-master 172.16.1.71 2核4G/60 ...

  10. 04 jumpserver资产管理

    4.资产管理: (1)管理用户: 管理用户是资产(被控服务器)上的 root,或拥有 NOPASSWD: ALL sudo 权限的用户, JumpServer 使用该用户来 `推送系统用户`.`获取资 ...