3301: [USACO2011 Feb] Cow Line
3301: [USACO2011 Feb] Cow Line
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 82 Solved: 49
[Submit][Status][Discuss]
Description
The N (1 <= N <= 20) cows conveniently numbered 1...N are playing
yet another one of their crazy games with Farmer John. The cows
will arrange themselves in a line and ask Farmer John what their
line number is. In return, Farmer John can give them a line number
and the cows must rearrange themselves into that line.
A line number is assigned by numbering all the permutations of the
line in lexicographic order.
Consider this example:
Farmer John has 5 cows and gives them the line number of 3.
The permutations of the line in ascending lexicographic order:
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.
The cows, in return, line themselves in the configuration "1 2 5 3 4" and
ask Farmer John what their line number is.
Continuing with the list:
4th : 1 2 4 5 3
5th : 1 2 5 3 4
Farmer John can see the answer here is 5
Farmer John and the cows would like your help to play their game.
They have K (1 <= K <= 10,000) queries that they need help with.
Query i has two parts: C_i will be the command, which is either 'P'
or 'Q'.
If C_i is 'P', then the second part of the query will be one integer
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John
challenging the cows to line up in the correct cow line.
If C_i is 'Q', then the second part of the query will be N distinct
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the
cows challenging Farmer John to find their line number.
有N头牛,分别用1……N表示,排成一行。
将N头牛,所有可能的排列方式,按字典顺序从小到大排列起来。
例如:有5头牛
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
4th : 1 2 4 5 3
5th : 1 2 5 3 4
……
现在,已知N头牛的排列方式,求这种排列方式的行号。
或者已知行号,求牛的排列方式。
所谓行号,是指在N头牛所有可能排列方式,按字典顺序从大到小排列后,某一特定排列方式所在行的编号。
如果,行号是3,则排列方式为1 2 4 3 5
如果,排列方式是 1 2 5 3 4 则行号为5
有K次问答,第i次问答的类型,由C_i来指明,C_i要么是‘P’要么是‘Q’。
当C_i为P时,将提供行号,让你答牛的排列方式。当C_i为Q时,将告诉你牛的排列方式,让你答行号。
Input
* Line 1: Two space-separated integers: N and K
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query.
Line 2*i will contain just one character: 'Q' if the cows are lining
up and asking Farmer John for their line number or 'P' if Farmer
John gives the cows a line number.
If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated
integers B_ij which represent the cow line. If the line 2*i is 'P',
then line 2*i+1 will contain a single integer A_i which is the line
number to solve for.
第1行:N和K
第2至2*K+1行:Line2*i ,一个字符‘P’或‘Q’,指明类型。
如果Line2*i是P,则Line2*i+1,是一个整数,表示行号;
如果Line2*i+1 是Q ,则Line2+i,是N个空格隔开的整数,表示牛的排列方式。
Output
* Lines 1..K: Line i will contain the answer to query i.
If line 2*i of the input was 'Q', then this line will contain a
single integer, which is the line number of the cow line in line
2*i+1.
If line 2*i of the input was 'P', then this line will contain N
space separated integers giving the cow line of the number in line
2*i+1.
第1至K行:如果输入Line2*i 是P,则输出牛的排列方式;如果输入Line2*i是Q,则输出行号
Sample Input
P
3
Q
1 2 5 3 4
Sample Output
5
HINT
Source
题解:这道题嘛。。。一开始想到的是生成法全排列,不过看N<=20,对于O(N!)的算法必挂无疑(生成法神马的感觉立刻让我回到小学的时光啊有木有,事实上小学时用QB跑全排列时N=12就已经需要相当长的时间了)
本题我在某某地方看到了一个新的很神奇的算法——康托展开(传送门在此,具体算法在此处不再赘述),于是开始瞎搞,一开始Q类问题求出初始序列后还弄了个树状数组进行维护,再看到N<=20时立刻感觉自己膝盖上中了来自USACO的鄙视之箭,于是P类询问我也开始暴力模拟,反正才N<=20,只要不真的瞎写都问题不大的
/**************************************************************
Problem:
User: HansBug
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ var
list:array[..] of int64;
i,j,k,l,m,n:longint;
a1,a2,a3,a4,a5:int64;
a,b,c,d:array[..] of int64;
ch:char;
procedure add(x:longint);
begin
if x= then exit;
while x<=n do
begin
inc(c[x]);
inc(x,x and -x);
end;
end;
function sum(x:longint):int64;
begin
if x= then exit();
sum:=;
while x> do
begin
inc(sum,c[x]);
dec(x,x and -x)
end;
end;
begin
list[]:=;
for i:= to do list[i]:=list[i-]*i;
readln(n,m);
for i:= to m do
begin
readln(ch);
case upcase(ch) of
'P':begin
readln(a1);
a1:=a1-;
for j:= to n do
begin
a[j]:=a1 div list[n-j];
a1:=a1 mod list[n-j];
end;
fillchar(c,sizeof(c),);
for j:= to n do
begin
l:=;
for k:= to n do
begin
if c[k]= then continue;
if a[j]=l then
begin
d[j]:=k;
c[k]:=;
end;
inc(l);
end;
end;
for j:= to n do if j<n then write(d[j],' ') else writeln(d[j]);
end;
'Q':begin
for j:= to n do read(b[j]);
readln;a1:=;
fillchar(c,sizeof(c),);
for j:= to n do
begin
add(b[j]);
inc(a1,(b[j]-sum(b[j]))*list[n-j]);
end;
writeln(a1+);
end;
end;
end;
end.
3301: [USACO2011 Feb] Cow Line的更多相关文章
- 【BZOJ】3301: [USACO2011 Feb] Cow Line(康托展开)
http://www.lydsy.com/JudgeOnline/problem.php?id=3301 其实这一题很早就a过了,但是那时候看题解写完也是似懂非懂的.... 听zyf神犇说是康托展开, ...
- [BZOJ] 3301: [USACO2011 Feb] Cow Line
康拓展开/逆展开 模板 #include<algorithm> #include<iostream> #include<cstdio> #define int lo ...
- BZOJ3301: [USACO2011 Feb] Cow Line
3301: [USACO2011 Feb] Cow Line Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 67 Solved: 39[Submit ...
- [USACO2011 Feb] Cow Line
原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=3301 康拓展开和逆展开的模板题. #include<iostream> #in ...
- 【BZOJ】【3301】【USACO2011 Feb】Cow Line
康托展开 裸的康托展开&逆康托展开 康托展开就是一种特殊的hash,且是可逆的…… 康托展开计算的是有多少种排列的字典序比这个小,所以编号应该+1:逆运算同理(-1). 序列->序号:( ...
- BZOJ2274: [Usaco2011 Feb]Generic Cow Protests
2274: [Usaco2011 Feb]Generic Cow Protests Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 196 Solve ...
- 2272: [Usaco2011 Feb]Cowlphabet 奶牛文字
2272: [Usaco2011 Feb]Cowlphabet 奶牛文字 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 138 Solved: 97 ...
- BZOJ3300: [USACO2011 Feb]Best Parenthesis
3300: [USACO2011 Feb]Best Parenthesis Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 89 Solved: 42 ...
- 【BZOJ3939】[Usaco2015 Feb]Cow Hopscotch 动态规划+线段树
[BZOJ3939][Usaco2015 Feb]Cow Hopscotch Description Just like humans enjoy playing the game of Hopsco ...
随机推荐
- Linux笔记(三) - 文件搜素
(1)文件搜索:find-name 根据文件名, *匹配任意字符 ,?单个字符-iname 根据文件名, 不区分大小写-size 根据文件大小查找 (+ 大于 -小于)(-a并且 -o或者)-us ...
- ASP.NET Zero--15.一个例子(8)商品分类管理-权限控制
1.添加权限常量 打开文件AppPermissions.cs [..\MyCompanyName.AbpZeroTemplate.Core\Authorization\AppPermissions.c ...
- tbl.js div实现的表格控件,完全免费,no jquery
html上现在有比较好用的表格控件是datatable,但是编辑.按钮等部分是收费的,只有基础功能免费.而且尺寸发生变化时需要手工刷新等繁琐操作较多.所以我开发一个免费的供大家使用. 本项目已用于“虚 ...
- MEAN教程1-MongoDB安装和使用
MEAN是MongoDB.Express.AngularJS和Node.js的缩写.其理念是仅使用JavaScript一种语言来驱动整个应用.其最鲜明的特点有以下几个:1整个应用只使用一种语言:2整个 ...
- Java 异步 IO
新的异步功能的关键点,它们是Channel 类的一些子集,Channel 在处理IO操作的时候需要被切换成一个后台进程.一些需要访问较大,耗时的操作,或是其它的类似实例,可以考虑应用此功能. ...
- 一次开放接口从需求分析到发布sdk线上包
新年开场篇,欢迎来点赞:本篇和大家分享的是使用webapi做得接口服务验证框架,需求来源是我打算把上篇提到的图片验证码做成一种服务提供给大家,尽管我在上篇已经把代码打包开源了,但是如果有一种快速对接成 ...
- Function.caller、arguments.caller、argument.callee
caller.callee是与javascript函数相关的两个属性,今天来总结下. Function.caller caller是javascript函数的一个属性,它指向调用当前函数的函数,如果函 ...
- 二叉搜索树Java实现(查找、插入、删除、遍历)
由于最近想要阅读下 JDK1.8 中 HashMap 的具体实现,但是由于 HashMap 的实现中用到了红黑树,所以我觉得有必要先复习下红黑树的相关知识,所以写下这篇随笔备忘,有不对的地方请指出- ...
- 浅谈stream数据流
汴水流,泗水流,流到瓜州古渡头, 吴山点点愁. 我们知道水是源源不断的, 抽刀断水水更流, 斩不断, 理还乱, 是水流.(技术贴, 本文权当读者没学过古诗). 在一些语言里, 我们的前辈把数据 ...
- 笔记之《用python写网络爬虫》
1 .3 背景调研 robots. txt Robots协议(也称为爬虫协议.机器人协议等)的全称是"网络爬虫排除标准"(Robots Exclusion Protocol),网站 ...