OpenJudge 726:ROADS

总时间限制: 1000ms内存限制: 65536kB

描述
N cities named with numbers 1 ... N are connected with one-way roads. Each road has two parameters associated with it : the road length and the toll that needs to be paid for the road (expressed in the number of coins). 
Bob and Alice used to live in the city 1. After noticing that Alice was cheating in the card game they liked to play, Bob broke up with her and decided to move away - to the city N. He wants to get there as quickly as possible, but he is short on cash.

We want to help Bob to find the shortest path from the city 1 to the city N that he can afford with the amount of money he has. 

输入
The first line of the input contains the integer K, 0 <= K <= 10000, maximum number of coins that Bob can spend on his way. 
The second line contains the integer N, 2 <= N <= 100, the total number of cities.

The third line contains the integer R, 1 <= R <= 10000, the total number of roads.

Each of the following R lines describes one road by specifying integers S, D, L and T separated by single blank characters :

  • S is the source city, 1 <= S <= N
  • D is the destination city, 1 <= D <= N
  • L is the road length, 1 <= L <= 100
  • T is the toll (expressed in the number of coins), 0 <= T <=100

Notice that different roads may have the same source and destination cities.

输出
The first and the only line of the output should contain the total length of the shortest path from the city 1 to the city N whose total toll is less than or equal K coins. 
If such path does not exist, only number -1 should be written to the output. 
样例输入
5
6
7
1 2 2 3
2 4 3 3
3 4 2 4
1 3 4 1
4 6 2 1
3 5 2 0
5 4 3 2
样例输出
11

求单源最短路。优先队列排序,路长为第一关键字,消耗费用为第二关键字。
 #include<cstdio>
#include<queue>
using namespace std;
int k,n,R;
int head[];
struct node{
int v;
int l,w;
int d;
int next;
bool operator < (const node & a) const{//重载运算符,多关键字排序
if(d==a.d)return w>a.w;
else return d>a.d;
}
}edge[]; priority_queue<node>Q; int dijkstra(){
node now1;
now1.v=;
now1.w=;
now1.d=;
Q.push(now1);
while(!Q.empty()){
node now=Q.top();
if(now.v==n)return now.d;
Q.pop();
for(int i=head[now.v];i;i=edge[i].next)
if(k>=now.w+edge[i].w){
node now2;
now2.v=edge[i].v;
now2.w=now.w+edge[i].w;
now2.d=now.d+edge[i].l;
Q.push(now2);
}
}
} int main(){
scanf("%d%d%d",&k,&n,&R);
for(int i=;i<=R;++i){
int x;
scanf("%d%d%d%d",&x,&edge[i].v,&edge[i].l,&edge[i].w);
edge[i].next=head[x];
head[x]=i;
}
printf("%d\n",dijkstra());
return ;
}
 

#图# #dijkstra# ----- OpenJudge 726:ROADS的更多相关文章

  1. 【LibreOJ】#6354. 「CodePlus 2018 4 月赛」最短路 异或优化建图+Dijkstra

    [题目]#6354. 「CodePlus 2018 4 月赛」最短路 [题意]给定n个点,m条带权有向边,任意两个点i和j还可以花费(i xor j)*C到达(C是给定的常数),求A到B的最短距离.\ ...

  2. [USACO09FEB] Revamping Trails 【分层图+Dijkstra】

    任意门:https://www.luogu.org/problemnew/show/P2939 Revamping Trails 题目描述 Farmer John dutifully checks o ...

  3. BZOJ3073: [Pa2011]Journeys(线段树优化建图 Dijkstra)

    题意 \(n\)个点的无向图,构造\(m\)次边,求\(p\)到任意点的最短路. 每次给出\(a, b, c, d\) 对于任意\((x_{a \leqslant x \leqslant b}, y_ ...

  4. [NOI2019]弹跳(KD-Tree/四分树/线段树套平衡树 优化建图+Dijkstra)

    本题可以用的方法很多,除去以下三种我所知道的就还有至少三种. 方法一:类似线段树优化建图,将一个平面等分成四份(若只有一行或一列则等分成两份),然后跑Dijkstra即可.建树是$O(n\log n) ...

  5. 【BZOJ-3627】路径规划 分层图 + Dijkstra + spfa

    3627: [JLOI2014]路径规划 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 186  Solved: 70[Submit][Status] ...

  6. bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级——分层图+dijkstra

    Description 每天,农夫John需要经过一些道路去检查牛棚N里面的牛. 农场上有M(1<=M<=50,000)条双向泥土道路,编号为1..M. 道路i连接牛棚P1_i和P2_i ...

  7. POJ 2374 线段树建图+Dijkstra

    题意: 思路: 线段树+Dijkstra(要堆优化的) 线段树要支持打标记 一个栅栏 拆成两个点 :左和右 新加一个栅栏的时候 看看左端点有没有被覆盖过 如果有的话 就分别从覆盖的那条线段的左右向当前 ...

  8. 倒水问题UVA 10603——隐式图&&Dijkstra

    题目 给你三个容量分别为 $a,b,c$ 的杯子,最初只有第3个杯子装满了水,其他两个杯子为空.最少需要到多少水才能让一个某个杯子中的水有 $d$ 升呢?如果无法做到恰好 $d$ 升,就让某个杯子里的 ...

  9. HDU-3499Flight (分层图dijkstra)

    一开始想的并查集(我一定是脑子坏掉了),晚上听学姐讲题才知道就是dijkstra两层: 题意:有一次机会能使一条边的权值变为原来的一半,询问从s到e的最短路. 将dis数组开成二维,第一维表示从源点到 ...

随机推荐

  1. USACO Section 1.2 Palindromic Squares 解题报告

    题目 题目描述 输入一个基数B,现在要从1到300之间找出一些符合要求的数字N.如果N的平方转换成B进制数之后是一个回文串,那么N就符合要求.我们将N转换成B进制数输出,然后再将N的平方转换成B进制数 ...

  2. Posix消息队列实现机制

    本文是对<Unix 网络编程 卷2:进程通信>的笔记. 引言 消息队列是进程间通信的一种方式,可是如果不理解他的实现原理,会有众多不理解之处,下面就结合本书中的例子,对posix消息队列来 ...

  3. zencart 掉炸天的tpl_main_page.php

    <?php /** * Common Template - tpl_main_page.php * * @version $Id: tpl_main_page.php 7085 2007-09- ...

  4. 自动获取访客QQ

    http://jerring.cn/bizqq/index.html http://www.oicqzone.com/qqjiqiao/2015072322139.html

  5. Gson通过借助TypeToken获取泛型参数的类型的方法

    最近在使用Google的Gson包进行Json和Java对象之间的转化,对于包含泛型的类的序列化和反序列化Gson也提供了很好的支持,感觉有点意思,就花时间研究了一下. 由于Java泛型的实现机制,使 ...

  6. VPN工作原理

    引言 在过去几十年中,世界发生了很大的变化.现在很多公司除了处理本地或地区性事务外,还要考虑全球市场和物流的问题.很多公司在全国甚至全球都设有分支机构,而这些公司都需要做的一件事情就是:找到能够与分公 ...

  7. unity3d之在屏幕上画线

    如何在屏幕上画线,简单的代码如下: using UnityEngine; public class Test : MonoBehaviour { void OnGUI() { GL.LoadOrtho ...

  8. 《accelerated c++》---------第六章

    本章主要讲了算法部分.就是<algoruthm>里面的算法.

  9. iOS查错机制

    转自: http://mp.weixin.qq.com/s?__biz=MjM5OTM0MzIwMQ==&mid=404478233&idx=2&sn=ae55d4f70fce ...

  10. 用Quick Cocos2dx做一个连连看(二)

    今天完成了以下内容: 1 成对生成SpriteItem 2 重排接口制作完成 3 SpriteItem的选择逻辑 主要代码如下: function MainScene:onEnter() local ...