time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to
an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black
mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess
draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse
is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there
are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so
according to the rule the dragon wins.

採用了搜索记忆化的思想,每次的问题向下归结为较小的子问题求解。

注意一下精度问题,假设精度已经达到要求,就不用再向下进行求解了。

dp[w][b]=p1+p2*tmp;

p1=w/(w+b) //公主直接赢的概率

p2=b/(w+b), b--; p*=(b/(w+b)); b--; 经过一轮,两个选手均未摸到白老鼠

tmp=dfs(w-1,b)*(w/(w+b))+dfs(w,b-1)*(b/(w+b));  //向下深搜乘以对应的概率,某种颜色老鼠吓跑的概率。。

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
using namespace std;
#define N 1005
#define LL __int64
const int inf=0x1f1f1f1f;
const double eps=1e-10;
double f[N][N];
double dfs(int w,int b) //Princess赢的概率
{
if(w<=0)
return 0;
if(b<=0)
return 1;
if(fabs(f[w][b]+1.0)>eps)
return f[w][b];
double p1,p2,tmp=1;
p1=w*1.0/(w+b); //直接赢
p2=b*1.0/(w+b); //还没输
b--;
p2=p2*(b*1.0/(w+b)); //dragon 也没赢
b--;
if(p2>eps) //精度不够则继续向下深搜!!
tmp=(w*1.0/(w+b))*dfs(w-1,b)+(b*1.0/(w+b))*dfs(w,b-1);
//printf("%.9f %.9f %.9f\n",p1,p2,tmp);
return f[w][b+2]=p1+p2*tmp;
}
int main()
{
int i,w,b;
memset(f,-1,sizeof(f));
while(scanf("%d%d",&w,&b)!=-1)
{
printf("%.9f\n",dfs(w,b));
}
return 0;
}

非递归形式的:

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
using namespace std;
#define N 1005
#define LL __int64
const int inf=0x1f1f1f1f;
const double eps=1e-10;
double dp[N][N]; //dp[w][b] 代表当前情况下Princess赢的概率
void inti()
{
memset(dp,-1,sizeof(dp));
dp[0][0]=0;
for(int i=1;i<N;i++)
{
dp[i][0]=1;
dp[0][i]=0;
}
}
int main()
{
int i,j,w,b;
double tmp;
inti();
while(scanf("%d%d",&w,&b)!=-1)
{
if(fabs(dp[w][b]+1.0)>eps)
{
printf("%.9f\n",dp[w][b]);
continue;
}
for(i=1;i<=w;i++)
{
for(j=1;j<=b;j++)
{
dp[i][j]=i*1.0/(i+j);
tmp=j*1.0/(i+j)*(j-1)/(i+j-1);
if(j>=2&&i+j>3)
dp[i][j]+=tmp*dp[i-1][j-2]*i/(i+j-2);
if(j>=3&&i+j>3)
dp[i][j]+=tmp*dp[i][j-3]*(j-2)/(i+j-2);
}
}
printf("%.9f\n",dp[w][b]);
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

CF 148D. Bag of mice (可能性DP)的更多相关文章

  1. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. CF 148D Bag of mice【概率DP】

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes Promblem descriptio ...

  3. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  5. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  6. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  7. CF 148D Bag of mice 题解

    题面 这是我做的第一道概率DP题: 做完后发现没有后效性的DP是真的水: 在这里说主要是再捋顺一下思路: 设f[i][j]表示有i只白鼠,j只黑鼠是获胜的概率: 显然:f[i][0]=1; 然后分四种 ...

  8. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  9. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

随机推荐

  1. C Coding Standard

    1 共同 Rule 1 编译的Warnings不能被忽略掉 Rule 2 在已有Code或者三方的code基础上的改动,同意使用原来的coding standard Rule 3 假设同意C和C++都 ...

  2. 设置SVN忽略文件和文件夹(文件夹)

    在多数项目中你总会有文件和文件夹不须要进行版本号控制.这可能包含一些由编译器生成的文件,*.obj,*.lst,也许是一个用于存放可运行程序的输出文件夹.仅仅要你提交改动,TortoiseSVN 就会 ...

  3. bzoj(矩阵快速幂)

    题意:定义Concatenate(1,N)=1234567……n.比如Concatenate(1,13)=12345678910111213.给定n和m,求Concatenate(1,n)%m. (1 ...

  4. LeetCode :: Binary Tree Zigzag Level Order Traversal [tree, BFS]

    Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to ...

  5. 开源语法分析器--ANTLR

      序言 有的时候,我还真是怀疑过上本科时候学的那些原理课究竟是不是在浪费时间.比方学完操作系统原理之后我们并不能自己动手实现一个操作系统:学完数据库原理我们也不能弄出个像样的DBMS出来:相同,学完 ...

  6. SE 2014年4月17日

    描述BGP路由属性 MED.首选值 的特点 MED相当于IGP协议中的度量值,在其他条件相同时,当本自治系统有多条到达外部自治系统的链路时,MED值小的路由优选.MED属性只能在两个自治系统间传递. ...

  7. C#按字节长度截取字符串

    产生这个问题的原因是将Substring方法将双字节的汉字当成一个字节的字符(UCS2字符)处理了,导致长度变短. 两个扩展方法按字节长度截取字符串 /// <summary> /// 根 ...

  8. linux开机启动服务和chkconfig使用方法(转)

    每个被chkconfig 管理的服务需要在对应的/etc/rc.d/init.d 下的脚本加上两行或者更多行的注释. 第一行告诉 chkconfig 缺省启动的运行级以及启动和停止的优先级.如果某服务 ...

  9. Python数据结构-字典

    tel={,} tel[ print(tel) print(tel['tom']) del tel['tom'] print(tel) print(tel.keys()) 运行结果: {, , } { ...

  10. Android Bitmap 载入与像素操作

    Android Bitmap 载入与像素操作 一:载入与像素读写 在Android SDK中,图像的像素读写能够通过getPixel与setPixel两个Bitmap的API实现. Bitmap AP ...