time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to
an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black
mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess
draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse
is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there
are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so
according to the rule the dragon wins.

採用了搜索记忆化的思想,每次的问题向下归结为较小的子问题求解。

注意一下精度问题,假设精度已经达到要求,就不用再向下进行求解了。

dp[w][b]=p1+p2*tmp;

p1=w/(w+b) //公主直接赢的概率

p2=b/(w+b), b--; p*=(b/(w+b)); b--; 经过一轮,两个选手均未摸到白老鼠

tmp=dfs(w-1,b)*(w/(w+b))+dfs(w,b-1)*(b/(w+b));  //向下深搜乘以对应的概率,某种颜色老鼠吓跑的概率。。

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
using namespace std;
#define N 1005
#define LL __int64
const int inf=0x1f1f1f1f;
const double eps=1e-10;
double f[N][N];
double dfs(int w,int b) //Princess赢的概率
{
if(w<=0)
return 0;
if(b<=0)
return 1;
if(fabs(f[w][b]+1.0)>eps)
return f[w][b];
double p1,p2,tmp=1;
p1=w*1.0/(w+b); //直接赢
p2=b*1.0/(w+b); //还没输
b--;
p2=p2*(b*1.0/(w+b)); //dragon 也没赢
b--;
if(p2>eps) //精度不够则继续向下深搜!!
tmp=(w*1.0/(w+b))*dfs(w-1,b)+(b*1.0/(w+b))*dfs(w,b-1);
//printf("%.9f %.9f %.9f\n",p1,p2,tmp);
return f[w][b+2]=p1+p2*tmp;
}
int main()
{
int i,w,b;
memset(f,-1,sizeof(f));
while(scanf("%d%d",&w,&b)!=-1)
{
printf("%.9f\n",dfs(w,b));
}
return 0;
}

非递归形式的:

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#include<algorithm>
#include<iostream>
using namespace std;
#define N 1005
#define LL __int64
const int inf=0x1f1f1f1f;
const double eps=1e-10;
double dp[N][N]; //dp[w][b] 代表当前情况下Princess赢的概率
void inti()
{
memset(dp,-1,sizeof(dp));
dp[0][0]=0;
for(int i=1;i<N;i++)
{
dp[i][0]=1;
dp[0][i]=0;
}
}
int main()
{
int i,j,w,b;
double tmp;
inti();
while(scanf("%d%d",&w,&b)!=-1)
{
if(fabs(dp[w][b]+1.0)>eps)
{
printf("%.9f\n",dp[w][b]);
continue;
}
for(i=1;i<=w;i++)
{
for(j=1;j<=b;j++)
{
dp[i][j]=i*1.0/(i+j);
tmp=j*1.0/(i+j)*(j-1)/(i+j-1);
if(j>=2&&i+j>3)
dp[i][j]+=tmp*dp[i-1][j-2]*i/(i+j-2);
if(j>=3&&i+j>3)
dp[i][j]+=tmp*dp[i][j-3]*(j-2)/(i+j-2);
}
}
printf("%.9f\n",dp[w][b]);
}
return 0;
}

版权声明:本文博客原创文章,博客,未经同意,不得转载。

CF 148D. Bag of mice (可能性DP)的更多相关文章

  1. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. CF 148D Bag of mice【概率DP】

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes Promblem descriptio ...

  3. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  5. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  6. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  7. CF 148D Bag of mice 题解

    题面 这是我做的第一道概率DP题: 做完后发现没有后效性的DP是真的水: 在这里说主要是再捋顺一下思路: 设f[i][j]表示有i只白鼠,j只黑鼠是获胜的概率: 显然:f[i][0]=1; 然后分四种 ...

  8. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  9. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

随机推荐

  1. 用jsp写注冊页面

    包含单选框.多选框.session的应用,页面自己主动跳转,中文乱码的处理,入门级 对于中文乱码的处理,注意几点:注冊页面数据提交方式为post不能忘了写,页面编码方式为gbk,处理提交信息的doRe ...

  2. 优酷m3u8视频源地址获取失败

    昨天和今天上午,优酷站点视频全然没有办法播放,可是我是获取的优酷视频的视频原地址,所以app还是能够正常播放而且有下载功能.今天下午開始,优酷视频网页能够訪问了,可是视频原地址却不在了.我全部的app ...

  3. LeetCode总结 -- 树的性质篇

    树的性质推断是树的数据结构比較主要的操作,一般考到都属于非常easy的题目,也就是第一道入门题.面试中最好不能有问题,力求一遍写对.不要给面试官不论什么挑刺机会.LeetCode中关于树的性质有下面题 ...

  4. OC 获取城市首字母

    解析依据文件中面的内容,读入一个城市,输出所在首字母 比方读入 长春 输出 c 读入 北京 输出 b 不知道文本中的字体是什么格式 读取文件时 程序不能正确执行 运用oc中的字典 initWithOb ...

  5. nyoj 130 同样的雪花 【哈希】

    同样的雪花 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描写叙述 You may have heard that no two snowflakes are alike. ...

  6. fastdfs storage server的设计与实现

     fastdfs是一个针对互联网应用设计的分布式文件系统.具有架构简单.结构清晰.代码量小等特点. 详细的介绍及架构请參考分布式文件系统FastDFS架构剖析(http://www.program ...

  7. poj3278(bfs)

    题目链接:http://poj.org/problem?id=3278 分析:广搜,每次三种情况枚举一下,太水不多说了. #include <cstdio> #include <cs ...

  8. 设计模式之十:观察者模式(Observer)

    观察者模式: 在对象之间定义了一种一对多的依赖关系.当一个对象改变它的状态时,全部依赖它的对象会自己主动接收通知并更新自己的状态. Define a one-to-many dependency be ...

  9. Hama学习总结

    Hama学习笔记 1.       Hama定义 Hama是基于HDFS上的BSP模型实现,其执行不须要MapReduce. 例证例如以下: 在单点调试的Hama系统上,仅仅执行NameNode.Da ...

  10. Android开发系列(二十二):AdapterViewFlipper的功能和使用方法

    AdapterViewFlipper继承了AdapterViewAnimator,它会显示一个View组件,能够通过showPrevious()和showNext()方法控制组件显示上一个.下一个组件 ...