MAX Average Problem

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 5825    Accepted Submission(s): 1446

Problem Description
Consider a simple sequence which only contains positive integers as a1, a2 ... an, and a number k. Define ave(i,j) as the average value of the sub sequence ai ... aj, i<=j. Let’s calculate max(ave(i,j)), 1<=i<=j-k+1<=n.
 
Input
There multiple test cases in the input, each test case contains two lines.

The first line has two integers, N and k (k<=N<=10^5).

The second line has N integers, a1, a2 ... an. All numbers are ranged in [1, 2000].
 
Output
For every test case, output one single line contains a real number, which is mentioned in the description, accurate to 0.01.
 
Sample Input
10 6
6 4 2 10 3 8 5 9 4 1
 
Sample Output
6.50

參考:kuangbin--hdu2993

直接斜率DP:O(N)

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=100000+10;
int n,k;
int s[MAX],q[MAX];
double dp[MAX],sum[MAX]; double GetY(int i,int j){
return sum[i]-sum[j];
} int GetX(int i,int j){
return i-j;
} double DP(){
int head=0,tail=1;
q[head]=0;
double ans=0;
for(int i=1;i<=n;++i)sum[i]=sum[i-1]+s[i]*1.0;
for(int i=k;i<=n;++i){
int j=i-k;
while(head+1<tail && GetY(j,q[tail-1])*GetX(q[tail-1],q[tail-2])<=GetY(q[tail-1],q[tail-2])*GetX(j,q[tail-1]))--tail;
q[tail++]=j;
while(head+1<tail && GetY(i,q[head])*GetX(i,q[head+1])<=GetY(i,q[head+1])*GetX(i,q[head]))++head;
dp[i]=(sum[i]-sum[q[head]])/(i-q[head]);
ans=max(ans,dp[i]);
}
return ans;
} int input(){//加速外挂
char ch=' ';
int num=0;
while(ch<'0' || ch>'9')ch=getchar();
while(ch>='0' && ch<='9')num=num*10+ch-'0',ch=getchar();
return num;
} int main(){
while(~scanf("%d%d",&n,&k)){
for(int i=1;i<=n;++i)s[i]=input();
printf("%0.2lf\n",DP());
}
return 0;
} 斜率DP+二分查找:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <queue>
#include <algorithm>
#include <cmath>
#include <map>
#include <iomanip>
#define INF 99999999
typedef long long LL;
using namespace std; const int MAX=100000+10;
int n,k;
int s[MAX],q[MAX];
LL sum[MAX]; LL GetY(int i,int j){
return sum[i]-sum[j];
} int GetX(int i,int j){
return i-j;
} LL check(int mid,int i){
return GetY(i,q[mid+1])*GetX(q[mid+1],q[mid])-GetY(q[mid+1],q[mid])*GetX(i,q[mid+1]);
} int search(int l,int r,int i){
//由于斜率单调递增
/*int top=r;
while(l<=r){//依据i与mid的斜率 和 i与mid+1的斜率之差求切点
if(l == r && l == top)return q[l];//这里一定要注意假设切点是最后一个点须要另判,由于mid+1不存在会出错
int mid=(l+r)>>1;
if(check(mid,i)<0)r=mid-1;
else l=mid+1;
}*/
while(l<r){//依据i与mid的斜率 和 i与mid+1的斜率之差求切点
int mid=(l+r)>>1;
if(check(mid,i)<0)r=mid;
else l=mid+1;
}
return q[l];
} double DP(){
int head=0,tail=1,p;
q[head]=0;
double ans=0,dp;
for(int i=1;i<=n;++i)sum[i]=sum[i-1]+s[i];
for(int i=k;i<=n;++i){
int j=i-k;
while(head+1<tail && GetY(j,q[tail-1])*GetX(q[tail-1],q[tail-2])<=GetY(q[tail-1],q[tail-2])*GetX(j,q[tail-1]))--tail;
q[tail++]=j;
p=search(head,tail-1,i);//依据相邻点与i点的斜率之差二分查找切点
dp=(sum[i]-sum[p])*1.0/(i-p);
if(dp>ans)ans=dp;
}
return ans;
} int input(){//加速外挂
char ch=' ';
int num=0;
while(ch<'0' || ch>'9')ch=getchar();
while(ch>='0' && ch<='9')num=num*10+ch-'0',ch=getchar();
return num;
} int main(){
while(~scanf("%d%d",&n,&k)){
for(int i=1;i<=n;++i)s[i]=input();
printf("%0.2lf\n",DP());
}
return 0;
}

hdu2993坡dp+二进制搜索的更多相关文章

  1. POJ1185 状压dp(二进制//三进制)解法

    很显然这是一道状压dp的题目 由于每个最优子结构和前两行有关,一个显而易见的想法是用三维dp[i][j][k]用来记录在第i行下为j状态,i - 1行为k状态时的最大值,然而dp[100][1 < ...

  2. [BZOJ5248][九省联考2018]一双木棋(连通性DP,对抗搜索)

    5248: [2018多省省队联测]一双木棋 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 43  Solved: 34[Submit][Status ...

  3. luogu||P1776||宝物筛选||多重背包||dp||二进制优化

    题目描述 终于,破解了千年的难题.小FF找到了王室的宝物室,里面堆满了无数价值连城的宝物……这下小FF可发财了,嘎嘎.但是这里的宝物实在是太多了,小FF的采集车似乎装不下那么多宝物.看来小FF只能含泪 ...

  4. HDU-1074.DoingHomework(撞鸭dp二进制压缩版)

    之前做过一道二进制压缩的题目,感觉也不是很难吧,但是由于见少识窄,这道题一看就知道是撞鸭dp,却总是无从下手....最后看了一眼博客,才顿悟,本次做这道题的作用知识让自己更多的认识二进制压缩,并无其它 ...

  5. 2018.09.01 poj3071Football(概率dp+二进制找规律)

    传送门 概率dp简单题. 设f[i][j]表示前i轮j获胜的概率. 如果j,k能够刚好在第i轮相遇,找规律可以发现j,k满足: (j−1)>>(i−1)" role=" ...

  6. [CodeVs3196]黄金宝藏(DP/极大极小搜索)

    题目大意:给出n(≤500)个数,两个人轮流取数,每次可以从数列左边或者右边取一个数,直到所有的数被取完,两个人都以最优策略取数,求最后两人所得分数. 显然这种类型的博弈题,第一眼就是极大极小搜索+记 ...

  7. HDU 5677 ztr loves substring(Manacher+dp+二进制分解)

    题目链接:HDU 5677 ztr loves substring 题意:有n个字符串,任选k个回文子串,问其长度之和能否等于L. 题解:用manacher算法求出所有回文子串的长度,并记录各长度回文 ...

  8. zoj2901【DP·二进制优化】

    题意: 要排一个L长度的序列,当 j 放在 i 后面的时候会增加v[ i ][ j ]的值,求构成L长度序列的最大值. 思路: 可以想到预处理任意两点<i,j>的最大值是多少,然后题目还有 ...

  9. BZOJ 1688: [Usaco2005 Open]Disease Manangement 疾病管理 状压DP + 二进制 + 骚操作

    #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) #defin ...

随机推荐

  1. Loser tree in Python | Christan Christens

    Loser tree in Python | Christan Christens Loser tree in Python I am taking an Advanced Data Structur ...

  2. python大文件迭代器的流式读取,之前一直使用readlines()对于大文件可以迅速充满内存,之前用法太野蛮暴力,要使用xreadlines或是直接是f,

    #!/usr/bin/env python #encoding=utf-8 import codecs count =0L #for line in file("./search_click ...

  3. 使用Seam Framework + JBoss 5.0 开发第一个Web应用 - 简单投票程序

    Seam这个单词的本意是缝合.连接,因而,Seam的作用即是把Java EE 规范里的JSF 和 EJB技术完美融合在一起,免去了很多胶合代码,并增强了JSF 和 EJB的很多功能.Seam的设计目标 ...

  4. ruby on rails创建的页面訪问很慢

    ruby on rails创建的页面訪问很慢 用rvm安装的ruby1.9.3 解决:cd ~/.rvm/rubies/ruby-1.9.3-p547/lib/ruby/1.9.1/webrick v ...

  5. PVPlayer的实现方式

    关于opencore下多媒体播放,在mediaserver进程里面仅仅有一行代码: MediaPlayerService::instantiate(); 这行代码的作用是初始化一个MediaPlaye ...

  6. 定义自己的布局RelativeLayout 绘制网格线

    在Android画线必须由一个载体,无论是控制,无论是布局.实际上它们是从继承View.由画线的方式自己的控制或布局的定义是最常见的. 以下是在其定义中的小样本实现RelativeLayout绘制网络 ...

  7. SCU 3132(博弈)

    传送门:windy和水星 -- 水星游戏 1 题意:在一张由 n*m 的格子组成的棋盘上放着 k 个骑士每个骑士的位置为(xi,yi),表示第xi行,第yi列骑士如果当前位置为(x,y),一步可以走的 ...

  8. hdu4105  Electric wave

    Electric wave Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...

  9. HDU 2544 最短路 SPFA 邻接表 模板

    Problem Description 在每年的校赛里,全部进入决赛的同学都会获得一件非常美丽的t-shirt.可是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以如今他们想 ...

  10. Netbeans源代码编辑技巧——使用代码补全和代码生成

    原文 Netbeans源代码编辑技巧——使用代码补全和代码生成 使用代码补全生成代码 一般来说,代码补全对于自动填充缺失的代码是有帮助的,例如标识符和关键字.截至 NetBeans IDE 6.0,您 ...