传送门:Visible Lattice Points

题意:0<=x,y,z<=n,求有多少对xyz满足gcd(x,y,z)=1。

设f(d) = GCD(a,b,c) = d的种类数 ;

F(n) 为GCD(a,b,c) = d 的倍数的种类数, n%a == 0 n%b==0 n%c==0。

即 :F(d) = (N/d)*(N/d)*(N/d);

则f(d) = sigma( mu[n/d]*F(n), d|n )

由于d = 1 所以f(1) = sigma( mu[n]*F(n) ) = sigma( mu[n]*(N/n)*(N/n)*(N/n) );

由于0能够取到,所以对于a,b,c 要讨论一个为0 ,两个为0的情况 (3种).

#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <limits.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 1000000
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
inline int read()
{
char ch=getchar();int x=,f=;
while(ch>''||ch<''){if(ch=='-')f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
bool vis[N+];
int mu[N+],prime[N+],sum[N+],num[N+];
void Mobius()
{
memset(vis,false,sizeof(vis));
mu[]=;
int tot=;
for(int i=;i<=N;i++)
{
if(!vis[i])
{
prime[tot++]=i;
mu[i]=-;
}
for(int j=;j<tot;j++)
{
if(i*prime[j]>N)break;
vis[i*prime[j]]=true;
if(i%prime[j]==)
{
mu[i*prime[j]]=;
break;
}
else
{
mu[i*prime[j]]=-mu[i];
}
}
}
for(int i=;i<=N;i++)sum[i]=sum[i-]+mu[i];
}
LL solve(int n)
{
LL res=;
for(int i=,last=;i<=n;i=last+)
{
last=n/(n/i);
res+=(LL)(sum[last]-sum[i-])*(n/i)*(n/i)*(n/i+);
}
return res;
} int main()
{
int T,n;
Mobius();
T=read();
while(T--)
{
n=read();
LL ans=solve(n);
printf("%lld\n",ans);
}
}

SPOJ 7001(莫比乌斯反演)的更多相关文章

  1. SPOJ PGCD(莫比乌斯反演)

    传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). ...

  2. bzoj 2820 / SPOJ PGCD 莫比乌斯反演

    那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j= ...

  3. SPOJ - VLATTICE (莫比乌斯反演)

    Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many latt ...

  4. spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演

    SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...

  5. SPOJ 7001 VLATTICE【莫比乌斯反演】

    题目链接: http://www.spoj.com/problems/VLATTICE/ 题意: 1≤x,y,z≤n,问有多少对(x,y,z)使得gcd(x,y,z)=1 分析: 欧拉搞不了了,我们用 ...

  6. SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)

    题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...

  7. SPOJ 7001. Visible Lattice Points (莫比乌斯反演)

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  8. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  9. 【BZOJ2226】[Spoj 5971] LCMSum 莫比乌斯反演(欧拉函数?)

    [BZOJ2226][Spoj 5971] LCMSum Description Given n, calculate the sum LCM(1,n) + LCM(2,n) + .. + LCM(n ...

随机推荐

  1. SQL中on条件与where条件的区别(转载)

    数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户. 在使用left jion时,on和where条件的区别如下: 1. on条件是在生成临时表时使用的条 ...

  2. [linux]linux命令学习-netstat

    linux非常多服务都与网络相关.当服务调不通或者是启动port被占用,或者是又是被防火墙挡住的时候,就须要查询网络相关的问题,netstat命令之前仅仅会用一两个參数这里.好好学习一番. 经常使用的 ...

  3. 学习算法-基数排序(radix sort)卡片分类(card sort) C++数组实现

    基数排序称为卡片分类,这是一个比较早的时间越多,排名方法. 现代计算机出现之前,它已被用于排序老式打孔卡. 说下基数排序的思想.前面我有写一个桶式排序,基数排序的思想是桶式排序的推广. 桶式排序:ht ...

  4. oracle flashback 2

    Flashback  database      After oracle 10g, oracle can rollback to an prior time by flashback databas ...

  5. ANT编译Android Eclipse工程

    将Android SDK的tools/和platform-tools/目录包含在可执行文件的搜索路径中.Windows下,将其添加到PATH环境变量中 切换到Android Eclipse项目目录下, ...

  6. android程序中使用命令行及获得命令行执行后的内容

    在开发android项目中,需要在程序中使用命令行执行,获得命令行执行后的结果并做处理. 下面是自己写的一个小例子,供以后参考使用: public String android_command(){ ...

  7. VC++ WIN32 sdk实现按钮自绘详解 之二.

    网上找了很多,可只是给出代码,没有详细解释,不便初学者理解.我就抄回冷饭.把这个再拿出来说说. 实例图片:    首先建立一个标准的Win32 Application 工程.选择a simple Wi ...

  8. Lucene.Net 2.3.1开发介绍 —— 三、索引(二)

    原文:Lucene.Net 2.3.1开发介绍 -- 三.索引(二) 2.索引中用到的核心类 在Lucene.Net索引开发中,用到的类不多,这些类是索引过程的核心类.其中Analyzer是索引建立的 ...

  9. VMWARE安装MAC时无法移动鼠标?

    1.先不要怀疑你的软件 2.查看你的硬件设置 3.什么?你把USB去除了? 4.给我加回来!!! 5.OK!鼠标可以移动了!

  10. CentOS 如何修改mysql 用户root的密码

    源地址:http://blog.sina.com.cn/s/blog_6756f85201019zv7.html 第一步:用帐号登录mysql[root@CentOs5 ~]# mysql -u ro ...