Here is the note for lecture three.

the linear model

Linear model is a basic and important model in machine learning.



1. input representation

   

The data we get usually needs some changes, most of them is the input data. 

   
In linear model, 

                    input =(x1,x2,x3,x4,x5...xn)

   
then the model will be

                    model =(w1,w2,w3,w4,w5...wn)

   
That means we should use our learning algorithm to figure out the value of all these ws.
So it is clear that trying to 

do the input representation is necessary. Trying to pick out some features of the input as input representation.



2. linear classification

   

 
 
When it comes to classification, linear model will be taken into consideration. Learning algorithm uses lines to classify.

Giving a linear model, we provide the input, and then classification will be got by the output. eg.y=f(X); if f(X)>0 and f(X')<0

then X and X' belong to different parts.

   
As it mentions above, in linear model, there will be the same parameters as the input. So how to come out a correct model?

   
There is a basic learning algorithm called Perceptron Learning Algorithm, it's PLA.
In PLA, there will be an initial model.

and learning algorithm will fix it up according to the verification of its data.
Therefore, PLA is a algorithm that getting 

final hypothesis by several verifications.

   
So we can get linear model by PLA.



3. linear regression



   What is linear regression?

in fact, it is really common to us.
regression equals a real valued output, if you have a real

valued funtion, then you get a linear regression problem. Sometimes we need a linear model to deal with a linear regression 

problem.


 
 I come up with a model now.

                                      

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVtYW8xOTkyMTAwNg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

   
the W and X are vector form. And I need figure out W to finish this model.

In fact, the problem have a really simple way to deal with. First, let us discuss with the error. f(X) is Our target function,

and we hope h(X) approximate f(X) as well as possible. However, there must be errors. We use square error in linear model, if E means error, then

                                 

X,Y,W are vectors.

   Of course, we want to minmize E. So we get derivate and equate it with 0



                                   

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXVtYW8xOTkyMTAwNg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt="">

                                 

Well, as you see, we figure out W with matrix operation.(X and Y are the input data and output data we have got) Is it a simple method?



   
 Finally, the linear regression can be used in linear classification. In linear classification, the initial model could be fixed

out by method used in linear regression, and completed by PLA.

Note for video Machine Learning and Data Mining——Linear Model的更多相关文章

  1. Note for video Machine Learning and Data Mining——training vs Testing

    Here is the note for lecture five. There will be several points  1. Training and Testing  Both of th ...

  2. Machine Learning and Data Mining Lecture 1

    Machine Learning and Data Mining Lecture 1 1. The learning problem - Outline     1.1 Example of mach ...

  3. How do you explain Machine Learning and Data Mining to non Computer Science people?

    How do you explain Machine Learning and Data Mining to non Computer Science people?   Pararth Shah, ...

  4. Machine Learning and Data Mining(机器学习与数据挖掘)

    Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...

  5. machine learning(14) --Regularization:Regularized linear regression

    machine learning(13) --Regularization:Regularized linear regression Gradient descent without regular ...

  6. Machine Learning - week 2 - Multivariate Linear Regression

    Multiple Features 上一章中,hθ(x) = θ0 + θ1x,表示只有一个 feature.现在,有多个 features,所以 hθ(x) = θ0 + θ1x1 + θ2x2 + ...

  7. Andrew Ng 的 Machine Learning 课程学习 (week2) Linear Regression

    这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解 ...

  8. Machine Learning and Data Science 教授大师

    http://www.cs.cmu.edu/~avrim/courses.html Foundations of Data Science Avrim Blum, www.cs.cornell.edu ...

  9. Machine Learning、Date Mining、IR&NLP 会议期刊论文推荐

    核心期刊排名查询 http://portal.core.edu.au/conf-ranks/ http://portal.core.edu.au/jnl-ranks/ 1.机器学习推荐会议 ICML— ...

随机推荐

  1. 带dos调试窗口的win32程序

    #pragma comment( linker, "/subsystem:\"console\" /entry:\"WinMainCRTStartup\&quo ...

  2. 用spring-data-redis实现类似twitter的网站(转)

    1. spring-data-redis简介 封装了一下redis的客户端,使得使用起来更方便. 优点是把客户端连接放到一个连接池里,从而提高性能.还有就是可以不同的客户端之间实现切换,而不用改一行代 ...

  3. 网页 HTML

    HTML--超文本标记语言Hyper Text Markup Language. 一,常规标签 (1)格式控制(记忆模型--Word工具栏) <b></b>加粗,<i&g ...

  4. [置顶] android关机闹钟设计思路

    1: 首先需要硬件支持,支持alarm中断触发开机,目前高通平台几乎都支持: 2:关机前需要在rtc-xxx.c中做到enable_irq_wake,和不disable alarm功能(默认开机后al ...

  5. flask开发restful api

    flask开发restful api 如果有几个原因可以让你爱上flask这个极其灵活的库,我想蓝图绝对应该算上一个,部署蓝图以后,你会发现整个程序结构非常清晰,模块之间相互不影响.蓝图对restfu ...

  6. 与众不同 windows phone (15) - Media(媒体)之后台播放音频

    原文:与众不同 windows phone (15) - Media(媒体)之后台播放音频 [索引页][源码下载] 与众不同 windows phone (15) - Media(媒体)之后台播放音频 ...

  7. find查找大于1M小于10M的文件 $ find . -size +1M -size -10M

    查找大于1M小于10M的文件$ find . -size +1M -size -10M

  8. 几款屏幕录制软件 ActivePresente

    几款屏幕录制软件,最强大是  ActivePresenter ,免费版, 足以应对我们日常需求.列表如下 支持系统:W-Windows,L-Linux,M-Mac 软件 格式 W L M 免费 说明 ...

  9. .NET Core 1.0.0 RC2

    .NET Core 1.0.0 RC2 在.NET Core 1.0.0 RC2即将正式发布之际,我也应应景,针对RC2 Preview版本编写一个史上最简单的MVC应用.由于VS 2015目前尚不支 ...

  10. Qt之VLFeat SLIC超像素分割(Cpp版)

    源地址:http://yongyuan.name/blog/vlfeat-slic-with-qt.html 近段时间学了点Qt,恰好前段时间用借助VLfeat以及OpenCV捣鼓了SLIC超像素分割 ...