题目连接:hdu_5213_Lucky

题意:给你n个数,一个K,m个询问,每个询问有l1,r1,l2,r2两个区间,让你选取两个数x,y,x,y的位置为xi,yi,满足l1<=xi<=r1,l2<=y2<=r2,使得x+y=K;

题解:首先,这题没有修改操作,即可以离线,离线区间问题就要想到莫队算法,然后看状态怎么搞,因为要求的答案满足区间的可加性,我们令f(l,r)表示 l到r这个区间满足条件的ans,令F(l1,r1,l2,r2)为在这两个区间内选取的数满足条件的ans,则根据容斥定理,F(l1,r1,l2,r2)=f(l1,r2)-f(r1+1,r2)-f(l1,l2-1)+f(r1+1,l2-1)。这里为什么不用靠左的区间来减1呢?因为当靠左的区间为1时,减1会到0的位置,所以不方便操作,这个公式可以在草稿上画一下线段区间图就了解了。然后就是莫队的操作了。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define F(i,a,b) for(int i=a;i<=b;i++)
using namespace std; const int N=(int)3e4+;
int sqr,n,a[N],m,K,l1,r1,l2,r2,ans[N],cnt[N];
struct dt{
int l,r,id,f;
bool operator<(const dt &b)const{
if(l/sqr==b.l/sqr)return r<b.r;
else return l/sqr<b.l/sqr;
}
}q[N<<]; void modui(){
sqr=(int)sqrt(n+0.5);
sort(q,q+(m<<));
int an=,l=,r=;
F(i,,(m<<)-){
while(r<q[i].r){
r++;
if(K>a[r]&&K-a[r]<=n)an+=cnt[K-a[r]];
cnt[a[r]]++;
}
while(r>q[i].r){
cnt[a[r]]--;
if(K>a[r]&&K-a[r]<=n)an-=cnt[K-a[r]];
r--;
}
while(l<q[i].l){
cnt[a[l]]--;
if(K>a[l]&&K-a[l]<=n)an-=cnt[K-a[l]];
l++;
}
while(l>q[i].l){
l--;
if(K>a[l]&&K-a[l]<=n)an+=cnt[K-a[l]];
cnt[a[l]]++;
}
ans[q[i].id]+=an*q[i].f;
}
} int main(){
while(~scanf("%d",&n)){
scanf("%d",&K);
F(i,,n)scanf("%d",a+i),cnt[i]=;
scanf("%d",&m);
F(i,,m-){
scanf("%d%d%d%d",&l1,&r1,&l2,&r2),ans[i]=;
q[(i<<)].l=l1,q[(i<<)].r=r2,q[(i<<)].id=i,q[(i<<)].f=;
q[(i<<)+].l=l1,q[(i<<)+].r=l2-,q[(i<<)+].id=i,q[(i<<)+].f=-;
q[(i<<)+].l=r1+,q[(i<<)+].r=r2,q[(i<<)+].id=i,q[(i<<)+].f=-;
q[(i<<)+].l=r1+,q[(i<<)+].r=l2-,q[(i<<)+].id=i,q[(i<<)+].f=;
}
modui();
F(i,,m-)printf("%d\n",ans[i]);
}
return ;
}

hdu_5213_Lucky(莫队算法+容斥定理)的更多相关文章

  1. Lucky HDU - 5213 (莫队,容斥)

    WLD is always very lucky.His secret is a lucky number . is a fixed odd number. Now he meets a strang ...

  2. HDU5213(容斥定理+莫队算法)

    传送门 题意 给出n个数和幸运数k,m次询问,每次询问[l1,r1]和[l2,r2]有多少对数满足x+y=k,x∈[l1,r1],y∈[l2,r2] 分析 看到m只有3e4,可以考虑\(m\sqrt{ ...

  3. 51nod1284容斥定理

    1284 2 3 5 7的倍数 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题   给出一个数N,求1至N中,有多少个数不是2 3 5 7的倍数. 例如N = 10, ...

  4. 【hdu4135】【hdu2841】【hdu1695】一类通过容斥定理求区间互质的方法

    [HDU4135]Co-prime 题意 给出三个整数N,A,B.问在区间[A,B]内,与N互质的数的个数.其中N<=10^9,A,B<=10^15. 分析 容斥定理的模板题.可以通过容斥 ...

  5. NBUT 1457 莫队算法 离散化

    Sona Time Limit:5000MS     Memory Limit:65535KB     64bit IO Format: Submit Status Practice NBUT 145 ...

  6. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  7. NPY and girls-HDU5145莫队算法

    Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...

  8. Codeforces617 E . XOR and Favorite Number(莫队算法)

    XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...

  9. Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色 ...

随机推荐

  1. 典型的DIV+CSS布局——左中右版式

    [效果] [HTML] <%@ Page Language="C#" AutoEventWireup="true"  CodeFile="Def ...

  2. 点赞增加的jquery写法

    $('.dianzan').click(function(){ $(this).find('span').html(parseInt($(this).find('span').html())+1) } ...

  3. linux设置时间服务器

    对多个linux服务器,时间保持一致是很必要的.根据精确度要求,应该有相应的时间间隔进行时间同步.如果不进行时间同步,时间久了就会差别很大,遇到问题时定位就很困难.因为多台设备的配合,log之间可能有 ...

  4. tableview cell添加3D动画

    当cell显示之前,会先调用该方法,因此给cell添加动画,在这个方法里面即可. -(void)tableView:(UITableView *)tableView willDisplayCell:( ...

  5. 样式的操作-访问外部定义的css样式

    JS对css的控制力非常强,甚至可以控制外部定义的css样式 ———————————————————————— <style>            .myclass{           ...

  6. wps制作目录

    01 设置标题为.标题1.标题2,标题302 引用--插入目录03 配置文档结构图.查看--可快速回到目录

  7. strlcpy() 函数

    size_t strlcpy(char *dst, const char *src, size_t siz) {  char *d = dst; const char *s = src; size_t ...

  8. .Net TransactionScope事务

    使用TransactionScope类 正如名称所暗示,TransactionScope类用于限定事务代码块,其具有一些明显优点,例如范围与应用程序对象模型无关,同时提供了一个简单直观的编程模型等等. ...

  9. nefu 72 N!

    Description Given an integer N(0 ≤ N ≤ 10000), your task is to calculate N! Input One N in one line, ...

  10. IE下单选按钮隐藏后点击对应label无法选中的bug解决

    项目中,有时候填写表单我们的选项会隐藏掉radio或者checkbox,而只显示给用户对应的文字选择,如果用户点击label选择时,在FF/Chrome等标准浏览器中隐藏掉的radio/checkbo ...