FpGrowth算法
FpGrowth算法
频繁项集与关联规则挖掘(2)--FpGrowth算法
上一篇介绍了关联规则挖掘的一些基本概念和经典的Apriori算法,Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除都需要扫描一次所有数据记录,造成整个算法在面临大数据集时显得无能为力。今天我们介绍一个新的算法挖掘频繁项集,效率比Aprori算法高很多。
FpGrowth算法通过构造一个树结构来压缩数据记录,使得挖掘频繁项集只需要扫描两次数据记录,而且该算法不需要生成候选集合,所以效率会比较高。我们还是以上一篇中用的数据集为例:
TID | Items |
T1 | {牛奶,面包} |
T2 | {面包,尿布,啤酒,鸡蛋} |
T3 | {牛奶,尿布,啤酒,可乐} |
T4 | {面包,牛奶,尿布,啤酒} |
T5 | {面包,牛奶,尿布,可乐} |
一、构造FpTree
FpTree是一种树结构,树结构定义如下:
public class FpNode { String idName;// id号
List<FpNode> children;// 孩子结点
FpNode parent;// 父结点
FpNode next;// 下一个id号相同的结点
long count;// 出现次数
}
树的每一个结点代表一个项,这里我们先不着急看树的结构,我们演示一下FpTree的构造过程,FpTree构造好后自然明白了树的结构。假设我们的最小绝对支持度是3。
Step 1:扫描数据记录,生成一级频繁项集,并按出现次数由多到少排序,如下所示:
Item | Count |
牛奶 | 4 |
面包 | 4 |
尿布 | 4 |
啤酒 | 3 |
可以看到,鸡蛋和可乐没有出现在上表中,因为可乐只出现2次,鸡蛋只出现1次,小于最小支持度,因此不是频繁项集,根据Apriori定理,非频繁项集的超集一定不是频繁项集,所以可乐和鸡蛋不需要再考虑。
Step 2:再次扫描数据记录,对每条记录中出现在Step 1产生的表中的项,按表中的顺序排序。初始时,新建一个根结点,标记为null;
1)第一条记录:{牛奶,面包},按Step 1表过滤排序得到依然为{牛奶,面包},新建一个结点,idName为{牛奶},将其插入到根节点下,并设置count为1,然后新建一个{面包}结点,插入到{牛奶}结点下面,插入后如下所示:
2)第二条记录:{面包,尿布,啤酒,鸡蛋},过滤并排序后为:{面包,尿布,啤酒},发现根结点没有包含{面包}的儿子(有一个{面包}孙子但不是儿子),因此新建一个{面包}结点,插在根结点下面,这样根结点就有了两个孩子,随后新建{尿布}结点插在{面包}结点下面,新建{啤酒}结点插在{尿布}下面,插入后如下所示:
3)第三条记录:{牛奶,尿布,啤酒,可乐},过滤并排序后为:{牛奶,尿布,啤酒},这时候发现根结点有儿子{牛奶},因此不需要新建结点,只需将原来的{牛奶}结点的count加1即可,往下发现{牛奶}结点有一个儿子{尿布},于是新建{尿布}结点,并插入到{牛奶}结点下面,随后新建{啤酒}结点插入到{尿布}结点后面。插入后如下图所示:
4)第四条记录:{面包,牛奶,尿布,啤酒},过滤并排序后为:{牛奶,面包,尿布,啤酒},这时候发现根结点有儿子{牛奶},因此不需要新建结点,只需将原来的{牛奶}结点的count加1即可,往下发现{牛奶}结点有一个儿子{面包},于是也不需要新建{面包}结点,只需将原来{面包}结点的count加1,由于这个{面包}结点没有儿子,此时需新建{尿布}结点,插在{面包}结点下面,随后新建{啤酒}结点,插在{尿布}结点下面,插入后如下图所示:
5)第五条记录:{面包,牛奶,尿布,可乐},过滤并排序后为:{牛奶,面包,尿布},检查发现根结点有{牛奶}儿子,{牛奶}结点有{面包}儿子,{面包}结点有{尿布}儿子,本次插入不需要新建结点只需更新count即可,示意图如下:
按照上面的步骤,我们已经基本构造了一棵FpTree(Frequent Pattern Tree),树中每天路径代表一个项集,因为许多项集有公共项,而且出现次数越多的项越可能是公公项,因此按出现次数由多到少的顺序可以节省空间,实现压缩存储,另外我们需要一个表头和对每一个idName相同的结点做一个线索,方便后面使用,线索的构造也是在建树过程形成的,但为了简化FpTree的生成过程,我没有在上面提到,这个在代码有体现的,添加线索和表头的Fptree如下:
至此,整个FpTree就构造好了,在下面的挖掘过程中我们会看到表头和线索的作用。
二、利用FpTree挖掘频繁项集
FpTree建好后,就可以进行频繁项集的挖掘,挖掘算法称为FpGrowth(Frequent Pattern Growth)算法,挖掘从表头header的最后一个项开始。
1)此处即从{啤酒}开始,根据{啤酒}的线索链找到所有{啤酒}结点,然后找出每个{啤酒}结点的分支:{牛奶,面包,尿布,啤酒:1},{牛奶,尿布,啤酒:1},{面包,尿布,啤酒:1},其中的“1”表示出现1次,注意,虽然{牛奶}出现4次,但{牛奶,面包,尿布,啤酒}只同时出现1次,因此分支的count是由后缀结点{啤酒}的count决定的,除去{啤酒},我们得到对应的前缀路径{牛奶,面包,尿布:1},{牛奶,尿布:1},{面包,尿布:1},根据前缀路径我们可以生成一颗条件FpTree,构造方式跟之前一样,此处的数据记录变为:
TID | Items |
T1 | {牛奶,面包,尿布} |
T2 | {牛奶,尿布} |
T3 | {面包,尿布} |
绝对支持度依然是3,构造得到的FpTree为:
构造好条件树后,对条件树进行递归挖掘,当条件树只有一条路径时,路径的所有组合即为条件频繁集,假设{啤酒}的条件频繁集为{S1,S2,S3},则{啤酒}的频繁集为{S1+{啤酒},S2+{啤酒},S3+{啤酒}},即{啤酒}的频繁集一定有相同的后缀{啤酒},此处的条件频繁集为:{{},{尿布}},于是{啤酒}的频繁集为{{啤酒}{尿布,啤酒}}。
2)接下来找header表头的倒数第二个项{尿布}的频繁集,同上可以得到{尿布}的前缀路径为:{面包:1},{牛奶:1},{牛奶,面包:2},条件FpTree的数据集为:
TID | Items |
T1 | {面包} |
T2 | {牛奶} |
T3 | {牛奶,面包} |
T4 | {牛奶,面包} |
注意{牛奶,面包:2},即{牛奶,面包}的count为2,所以在{牛奶,面包}重复了两次,这样做的目的是可以利用之前构造FpTree的算法来构造条件Fptree,不过这样效率会降低,试想如果{牛奶,面包}的count为20000,那么就需要展开成20000条记录,然后进行20000次count更新,而事实上只需要对count更新一次到20000即可。这是实现上的优化细节,实践中当注意。构造的条件FpTree为:
这颗条件树已经是单一路径,路径上的所有组合即为条件频繁集:{{},{牛奶},{面包},{牛奶,面包}},加上{尿布}后,又得到一组频繁项集{{尿布},{牛奶,尿布},{面包,尿布},{牛奶,面包,尿布}},这组频繁项集一定包含一个相同的后缀:{尿布},并且不包含{啤酒},因此这一组频繁项集与上一组不会重复。
重复以上步骤,对header表头的每个项进行挖掘,即可得到整个频繁项集,可以证明(严谨的算法和证明可见参考文献[1]),频繁项集即不重复也不遗漏。
程序的实现代码还是放在我的github上,这里看一下运行结果:
绝对支持度: 3
频繁项集:
面包 尿布 3
尿布 牛奶 3
牛奶 4
面包 牛奶 3
尿布 啤酒 3
面包 4
另外我下载了一个购物篮的数据集,数据量较大,测试了一下FpGrowth的效率还是不错的。FpGrowth算法的平均效率远高于Apriori算法,但是它并不能保证高效率,它的效率依赖于数据集,当数据集中的频繁项集的没有公共项时,所有的项集都挂在根结点上,不能实现压缩存储,而且Fptree还需要其他的开销,需要存储空间更大,使用FpGrowth算法前,对数据分析一下,看是否适合用FpGrowth算法。
下一篇将介绍,关联规则的评价标准,欢迎持续关注。
参考文献:
[1].Han jia wei, Pei Jan等 Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach.2004
感谢关注,欢迎回帖交流!
FpGrowth算法的更多相关文章
- 使用 FP-growth 算法高效挖掘海量数据中的频繁项集
前言 对于如何发现一个数据集中的频繁项集,前文讲解的经典 Apriori 算法能够做到. 然而,对于每个潜在的频繁项,它都要检索一遍数据集,这是比较低效的.在实际的大数据应用中,这么做就更不好了. 本 ...
- FP-Growth算法及演示程序
FP-Growth算法 FP-Growth(频繁模式增长)算法是韩家炜老师在2000年提出的关联分析算法,它采取如下分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-Tree),但仍保留项集 ...
- 机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growt ...
- 数据挖掘系列(2)--关联规则FpGrowth算法
上一篇介绍了关联规则挖掘的一些基本概念和经典的Apriori算法,Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除 ...
- 使用Apriori算法和FP-growth算法进行关联分析
系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...
- FP-Growth算法之频繁项集的挖掘(python)
前言: 关于 FP-Growth 算法介绍请见:FP-Growth算法的介绍. 本文主要介绍从 FP-tree 中提取频繁项集的算法.关于伪代码请查看上面的文章. FP-tree 的构造请见:FP-G ...
- FPGrowth算法原理
算法实现: /** * FPGrowth算法的主要思想: * 1. 构造频繁1项集:遍历初始数据集构造频繁1项集,并作为项头表,建立将指向fpTree节点对应元素的引用 * 2. 构造FPTree:再 ...
- 关联分析:FP-Growth算法
关联分析又称关联挖掘,就是在交易数据.关系数据或其他信息载体中,查找存在于项目集合或对象集合之间的频繁模式.关联.相关性或因果结构.关联分析的一个典型例子是购物篮分析.通过发现顾客放入购物篮中不同商品 ...
- Mahout源码分析:并行化FP-Growth算法
FP-Growth是一种常被用来进行关联分析,挖掘频繁项的算法.与Aprior算法相比,FP-Growth算法采用前缀树的形式来表征数据,减少了扫描事务数据库的次数,通过递归地生成条件FP-tree来 ...
随机推荐
- Require.JS 2.0
就在前天晚上RequireJS发布了一个大版本,直接从version1.0.8升级到了2.0.随后的几小时James Burke又迅速的将版本调整为2.0.1,当然其配套的打包压缩工具r.js也同时升 ...
- 使用 C# 进行 Outlook 2007 编程
原文:使用 C# 进行 Outlook 2007 编程 探讨如何使用 C# 编程语言生成 Outlook 识别的应用程序和 Outlook 外接程序. 请从"Add References&q ...
- OCP-1Z0-051-题目解析-第5题
5. Which SQL statements would display the value 1890.55 as $1,890.55? (Choose three .) A. SELECT TO_ ...
- String 的intern() 方法说明
1.说明 Java中string.intern()方法调用会先去字符串常量池中查找相应的字符串,如果字符串不存在,就会在字符串常量池中创建该字符串然后再返回. 2.源码说明 public native ...
- 临时和永久修改oracle sysdate的默认输出格式
1.当前会话有效 alter session set NLS_DATE_FORMAT='YYYY-MM-DD:HH24:MI:SS'; 2.永久生效 sys用户登入后执行如下命令 然后重启数据库使其生 ...
- [译]Java 设计模式之备忘录
(文章翻译来自Java Design Pattern: Memento) memento是一个保存另外一个对象内部状态拷贝的对象.这样以后就可以将该对象恢复到原先保存的状态. 在将来时空旅行将成为显示 ...
- Python开发环境Wing IDE 5.0测试第八版发布
Wing IDE是著名的Python开发工具,是Wingware公司的主要产品.从1999年起,Wingware公司便开始专注于Python开发设计.Wing IDE在十几年的发展中,不管完善.其强大 ...
- JavaScript一个类继承中实现
JavaScript类是默认原型对象继承: var Person = function() { this.name = "people"; this.hello = functio ...
- ACE_Message_Block 学习
本文参考http://www.cnblogs.com/TianFang/archive/2006/12/30/607960.html 1. ACE_Message_Block 的length() 返回 ...
- 《互联网初创企业password》书评
今天试用了一下<互联网初创企业password>这本书.我觉得这本书开始的很真实,从学校刚毕业那会儿.它是生命,他们的牛b时间,一直想做点什么来证明自己.具体地,并且现在是在最好的时候.互 ...