Bilinear image scaling is about the same as nearest neighbor image scaling except with interpolation. Instead of copying the neighboring pixels (which often results in jaggy image), interpolation technique based on surrounding pixels is used to produce much smoother scaling.
Although bilinear scaling is not exactly complicated, it is a composite algorithm based on other more basic function. As the name might have suggested, the algorithm is a combination of two linear interpolations. It is not mandatory to know what linear interpolation is but doing is not really that bad. I suggest the reader to follow through at least the brief explanation.

Linear Interpolation (a brief explanation)

Linear interpolation is a method to estimate an arbitrary point between two other points. Consider two points of colors on a canvas, red and green. Imagine a straight line between the dots, and somewhere on this imaginary line put a new dot. What is a suitable color for this new dot? Any color is fine really, but we are talking about interpolation so we should be doing that. Putting our little imaginary line in perspective,

Figure 1: What is a suitable color for Y?

In this illustration, a yet unknown color dot Y is placed somewhere between A (red) and B (green). Other only known thing is the distance between A and B which is L and the distance between A and Y which is l. This information is sufficient to construct the so called linear interpolation function.

Figure 2: Linear interpolation equation

This function will be able to tell what Y's color is. If you are interested to know the expected color for Y, check the full article for Linear Interpolation.

Texture

Going back to the original topic, the other trivial but still important term is the texture. This is not about the whole image itself but only a small portion of it. In the simplest of bilinear scaling, the usual texture dimension is only two by two, a texture containing only four pixels. The illustration below should help with getting the idea for this,

Figure3: 2 by 2 texture

That small texture with A, B, C, and D is what we are talking about. Keep in mind there will be many smaller textures like this composing the entire image. This also means the algorithm has many smaller textures to work with.

The algorithm

Scaling an image goes in two ways, making it larger or to make it smaller. By enlarging an image, some new pixels are constructed by means of interpolation. By shrinking, we are tempted to think the right pixels are selected to keep while the others are thrown away, but this is not the case. Unlike nearest neighbor shrinking where pixels are thrown, bilinear shrinking estimates a smaller resolution of the original image. Even though details are lost, almost all the new pixels in the shrunk image do not come directly from their original, but interpolated, indirectly keeping the properties of lost pixels. It should be understood this is not always the case, shrinking image to half size (and smaller) significantly reduce image quality – not much different from nearest neighbor shrinking. This also applies to sizing up more than double the original size.

Figure4:Enlarged image introduces "white spaces"

For the purpose of this article, explanation will follow the making-it-larger path because that is probably why people are reading this anyway. So we start by enlarging a small texture such as shown in figure 4. Note: this is not to be mistaken as a requirement to enlarge every single texture found in an image. The objective is finding the colors for all white spaces, including i, j, and Y. Here linear interpolation comes into play, first find the relation between A, i, and B. Using linear interpolation function that we derived at the beginning (figure 2), we get this equation,

Do the same for C, j, and D and we get,

Now we have two linear interpolation equations. Next is to combine the two equations forming a single equation that is called the bilinear function.

Substituting equation 1 and 2 into 3 we get,

Using this last equation, all white spaces can now be interpolated!! That's it!!

Implementation

Yeah right. Putting the idea on paper is all nice and convenient but actually doing it is an entirely different thing. This time we discuss how a basic implementation is worked out.
Two things must be understood before we proceed, first is the actual code for scaling the image. Secondly is the code for interpolation process. These two are distinct, the first as mentioned is for the enlargement and at the same time introducing all the white spaces. The second part which is the interpolation process decides the color for these white spaces. Nearest neighbor algorithm share similar code for scaling, just missing the interpolation part.
Here is a Java snippet for 1 channel (grayscale) bilinear image scaling. Each pixel is an int and has a range from 0 to 255.

/*
* Bilinear resize grayscale image.
* pixels is an array of size w * h.
* Target dimension is w2 * h2.
* w2 * h2 cannot be zero.
*
* @param pixels Image pixels.
* @param w Image width.
* @param h Image height.
* @param w2 New width.
* @param h2 New height.
* @return New array with size w2 * h2.
*/
public int[] resizeBilinearGray(int[] pixels, int w, int h, int w2, int h2) {
int[] temp = new int[w2*h2] ;
int A, B, C, D, x, y, index, gray ;
float x_ratio = ((float)(w-1))/w2 ;
float y_ratio = ((float)(h-1))/h2 ;
float x_diff, y_diff, ya, yb ;
int offset = 0 ;
for (int i=0;i<h2;i++) {
for (int j=0;j<w2;j++) {
x = (int)(x_ratio * j) ;
y = (int)(y_ratio * i) ;
x_diff = (x_ratio * j) - x ;
y_diff = (y_ratio * i) - y ;
index = y*w+x ; // range is 0 to 255 thus bitwise AND with 0xff
A = pixels[index] & 0xff ;
B = pixels[index+1] & 0xff ;
C = pixels[index+w] & 0xff ;
D = pixels[index+w+1] & 0xff ; // Y = A(1-w)(1-h) + B(w)(1-h) + C(h)(1-w) + Dwh
gray = (int)(
A*(1-x_diff)*(1-y_diff) + B*(x_diff)*(1-y_diff) +
C*(y_diff)*(1-x_diff) + D*(x_diff*y_diff)
) ; temp[offset++] = gray ;
}
}
return temp ;
}

Here is a Java snippet for 4 channels (color) bilinear image scaling. Each pixel is a packed int containing alpha, red, green, and blue information.

/*
* Bilinear resize ARGB image.
* pixels is an array of size w * h.
* Target dimension is w2 * h2.
* w2 * h2 cannot be zero.
*
* @param pixels Image pixels.
* @param w Image width.
* @param h Image height.
* @param w2 New width.
* @param h2 New height.
* @return New array with size w2 * h2.
*/
public int[] resizeBilinear(int[] pixels, int w, int h, int w2, int h2) {
int[] temp = new int[w2*h2] ;
int a, b, c, d, x, y, index ;
float x_ratio = ((float)(w-1))/w2 ;
float y_ratio = ((float)(h-1))/h2 ;
float x_diff, y_diff, blue, red, green ;
int offset = 0 ;
for (int i=0;i<h2;i++) {
for (int j=0;j<w2;j++) {
x = (int)(x_ratio * j) ;
y = (int)(y_ratio * i) ;
x_diff = (x_ratio * j) - x ;
y_diff = (y_ratio * i) - y ;
index = (y*w+x) ;
a = pixels[index] ;
b = pixels[index+1] ;
c = pixels[index+w] ;
d = pixels[index+w+1] ; // blue element
// Yb = Ab(1-w)(1-h) + Bb(w)(1-h) + Cb(h)(1-w) + Db(wh)
blue = (a&0xff)*(1-x_diff)*(1-y_diff) + (b&0xff)*(x_diff)*(1-y_diff) +
(c&0xff)*(y_diff)*(1-x_diff) + (d&0xff)*(x_diff*y_diff); // green element
// Yg = Ag(1-w)(1-h) + Bg(w)(1-h) + Cg(h)(1-w) + Dg(wh)
green = ((a>>8)&0xff)*(1-x_diff)*(1-y_diff) + ((b>>8)&0xff)*(x_diff)*(1-y_diff) +
((c>>8)&0xff)*(y_diff)*(1-x_diff) + ((d>>8)&0xff)*(x_diff*y_diff); // red element
// Yr = Ar(1-w)(1-h) + Br(w)(1-h) + Cr(h)(1-w) + Dr(wh)
red = ((a>>16)&0xff)*(1-x_diff)*(1-y_diff) + ((b>>16)&0xff)*(x_diff)*(1-y_diff) +
((c>>16)&0xff)*(y_diff)*(1-x_diff) + ((d>>16)&0xff)*(x_diff*y_diff); temp[offset++] =
0xff000000 | // hardcode alpha
((((int)red)<<16)&0xff0000) |
((((int)green)<<8)&0xff00) |
((int)blue) ;
}
}
return temp ;
}

Caveat
Bilinear scaling performs best when the desired output dimension is no more than double or half its original size. If that is the case however, it might be good to implement additional technique called Mip Mapping on top of the existing algorithm.

========================================================
转载请注明出处:http://blog.csdn.net/songzitea/article/details/10781359
========================================================

【图像处理】Bilinear Image Scaling的更多相关文章

  1. FFmpeg源码简单分析:libswscale的sws_scale()

    ===================================================== FFmpeg的库函数源码分析文章列表: [架构图] FFmpeg源码结构图 - 解码 FFm ...

  2. FFmpeg源代码简单分析:libswscale的sws_scale()

    ===================================================== FFmpeg的库函数源代码分析文章列表: [架构图] FFmpeg源代码结构图 - 解码 F ...

  3. 数字图像处理实验(4):PROJECT 02-04 [Multiple Uses],Zooming and Shrinking Images by Bilinear Interpolation 标签: 图像处理MATLAB

    实验要求: Zooming and Shrinking Images by Bilinear Interpolation Objective To manipulate another techniq ...

  4. Python图像处理库(PIL)

    官方:(详细)http://pillow.readthedocs.io/en/3.1.x/reference/ImageDraw.html http://pillow.readthedocs.io/e ...

  5. 杂项之图像处理pillow

    杂项之图像处理pillow 本节内容 参考文献 生成验证码源码 一些小例子 1. 参考文献 http://pillow-cn.readthedocs.io/zh_CN/latest/ pillow中文 ...

  6. Atitit  图像处理Depixelizing Pixel Art像素风格画的矢量化

    Atitit  图像处理Depixelizing Pixel Art像素风格画的矢量化 在去年的时候,偶然看到hqx算法. 一个高质量的插值放大算法. 与双线性插值等插值算法相比,这个算法放大后对人眼 ...

  7. Atitit (Sketch Filter)素描滤镜的实现  图像处理  attilax总结

    Atitit (Sketch Filter)素描滤镜的实现  图像处理  attilax总结 1.1. 素描滤镜的实现方法比较简单,这里我们直接写出算法过程如下:1 1.2. 颜色减淡COLOR_DO ...

  8. Atitit 图像处理 常用8大滤镜效果 Jhlabs 图像处理类库 java常用图像处理类库

    Atitit 图像处理 常用8大滤镜效果 Jhlabs 图像处理类库 java常用图像处理类库1.1. 5种常用的Photoshop滤镜,分别针对照片的曝光.风格色调.黑白照片处理.锐利度.降噪这五大 ...

  9. Matlab图像处理入门

    1. Matlab基础 1.1     数据格式 Matlab默认的数据格式为双精度浮点数的矩阵或数组,同时支持其它数据类型.Matlab将单变量看作1´1的数组.Matlab支持的数据类型如下: 索 ...

随机推荐

  1. Spring源代码解析 ---- 循环依赖

    一.循环引用: 1. 定义: 循环依赖就是循环引用,就是两个或多个Bean相互之间的持有对方,比方CircularityA引用CircularityB,CircularityB引用Circularit ...

  2. 【floyd】HDU 1874 畅通project续

    之后的题解偏重有用/总结性质,尽量理解算法本身而不是题,时间复杂度什么的也能够放放. 非常久之前做过这个题,当时使用dijkstra做的,关于几个最短路算法,分类的话能够分为下面几种. 1.单源最短路 ...

  3. 安卓面试精华(Activity部分)

    过几天小弟要去面试了,当然免不了要好好复习下功课,其实很多东西也不是特别清楚,今天都当作一个回顾和巩固,希望我的这篇文章能对即将去找工作的同学有所帮助. 1. Q:什么是activity? 虽然这个问 ...

  4. ARMv8 Linux内核head.S源码分析

    ARMv8Linux内核head.S主要工作内容: 1. 从el2特权级退回到el1 2. 确认处理器类型 3. 计算内核镜像的起始物理地址及物理地址与虚拟地址之间的偏移 4. 验证设备树的地址是否有 ...

  5. Delphi - XP扫雷外挂制作

    技术交流,DH讲解. 本来之前就在写这个文章,还写了War3挂的教程,后来因为一些事就没有弄了.现在过年在家又没有事就继续把这个写完吧.哈哈.不要以为写个挂很容易,要想写个挂肯定要了解游戏呀.我们现在 ...

  6. C#日志工具汇总

    log4net          log4net是一个可以帮助程序员把日志信息输出到各种不同目标的.net类库.它可以容易的加载到开发项目中,实现程序调试和运行的时候的日志信息输出,提供了比.net自 ...

  7. 基于visual Studio2013解决面试题之0608找出两个只出现一次的数

     题目

  8. 王立平--PopupWindow

    MainActivity.java <span style="font-size:14px;">package com.main; import android.app ...

  9. LLBL Gen Pro 5.0

    LLBL Gen Pro 5.0 企业应用开发入门 Solutions Design 公司于2016年5月发布了LLBL Gen Pro 5.0,这个新版本的发布出乎于我的意料.我的猜想是从4.2升级 ...

  10. HDU 4870 Rating (2014 多校联合第一场 J)(概率)

    题意: 一个人有两个TC的账号,一开始两个账号rating都是0,然后每次它会选择里面rating较小的一个账号去打比赛,每次比赛有p的概率+1分,有1-p的概率-2分,当然如果本身是<=2分的 ...