BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论
BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论
Description
Input
Output
Sample Input
5 5 6 6 5 5
Sample Output
HINT
k<=100
传统Nim游戏先手必胜当且仅当石子异或和不为0.
也就是说后手要尽可能选择一些数,是剩下的异或和为0.
转化为这样一个问题,删去尽可能少的石子,使得剩下的不存在一种方案使拿出的异或和为0。
即选择尽可能多的石子使他们线性不相关。
线性基贪心即可。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
int b[50],a[150],n;
ll sum;
bool cmp(int x,int y) {return x>y;}
bool insert(int x) {
int i;
for(i=30;i>=0;i--) {
if(x&(1<<i)) {
if(b[i]) x^=b[i];
else {
b[i]=x; return 1;
}
}
}
return 0;
}
int main() {
scanf("%d",&n);
int i;
for(i=1;i<=n;i++) scanf("%d",&a[i]),sum+=a[i];
sort(a+1,a+n+1,cmp);
for(i=1;i<=n;i++) {
if(insert(a[i])) sum-=a[i];
}
printf("%lld\n",sum);
}
BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论的更多相关文章
- 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基
[BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...
- [CQOI2013]新Nim游戏(线性基)
P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...
- bzoj 3105: [cqoi2013]新Nim游戏【线性基+贪心】
nim游戏的先手必胜条件是所有堆的火柴个数异或和为0,也就是找一个剩下火柴堆数没有异或和为0的子集的方案,且这个方案保证剩下的火柴个数总和最大 然后我就不会了,其实我到现在也不知道拟阵是个什么玩意-- ...
- 洛谷P4301 [CQOI2013]新Nim游戏(线性基)
传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 后手在什么时候能够获胜呢?只有在他能构造出一个子集的异或和为0时(这个应该是nim博弈的结论了吧) 那么为了必胜,我们就要取到没有子集异或和为0为止 ...
- 【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)
bzoj3105,懒得复制 Solution: 首先你要有一个前置技能:如果每堆石子异或和为\(0\),则先手比输 这题我们怎么做呢,因为我们没人要先取掉几堆,为了赢对方一定会使剩下的异或和为\(0\ ...
- bzoj3105 [cqoi2013]新Nim游戏——贪心+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3105 首先,要先手必胜,就不能取后让剩下的火柴中存在异或和为0的子集,否则对方可以取成异或和 ...
- AcWing 229. 新NIM游戏 (线性基+博弈论)打卡
题目:https://www.acwing.com/problem/content/description/231/ 题意:给出n堆石子,然后第一回合,A玩家可以随便拿多少堆石子,第二回合B玩家随便拿 ...
- 【BZOJ3105】新Nim游戏(线性基)
[BZOJ3105]新Nim游戏(线性基) 题面 BZOJ Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以 ...
- BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基
一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...
随机推荐
- Bone Collector II(01背包kth)
The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup&quo ...
- HDU-2509-Be the Winner,博弈题~~水过~~
Be the Winner Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ht ...
- linux上配置spark集群
环境: linux spark1.6.0 hadoop2.2.0 一.安装scala(每台机器) 1.下载scala-2.11.0.tgz 放在目录: /opt下,tar -zxvf scal ...
- Http、TCP/IP、Socket的区别
网络由下往上分为 物理层.数据链路层.网络层.传输层.会话层.表示层和应用层. 通过初步的了解,我知道IP协议对应于网络层,TCP协议对应于传输层,而HTTP协议对应于应用层, 三者从本质上来说没有可 ...
- Python基础教程笔记——第6章:抽象(函数)
(1)计算裴波那契数列: fbis=[0,1] num=int(input("please input the number")) for i in range(num-2): f ...
- linux 安装问题make: 没有指明目标并且找不到makefile。 停止
错误发生的可能原因,忘记安装软件需要的依赖.
- codechef Taxi Driver
题意: 给N个点求任意两个点的“距离”总和: A,B的“距离”定义为:min(|ax-bx|,|ay-by|) (n<200000) 好题! 解析: 看着没思路 先是公式化简:让 ax=sx+s ...
- 51nod 1907(多项式乘法启发式合并)
题目: 分析: 对于一个确定的生成子图,很明显是在一个连通块上走,走完了再跳到另一个连通块上,假设连通块个数为cnt,那么答案一定是$min(a_{cnt-1},a_cnt,..,a_{n-1})$ ...
- 操作redis有关的命令
)连接操作命令 quit:关闭连接(connection) auth:简单密码认证 help cmd: 查看cmd帮助,例如:help quit )持久化 save:将数据同步保存到磁盘 bgsave ...
- [Bash] Search for Text with `grep`
In this lesson, we’ll use grep to find text patterns. We’ll also go over some of the flags that grep ...