BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论

Description

传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同)。两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴。可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿。拿走最后一根火柴的游戏者胜利。
本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴。可以一堆都不拿,但不可以全部拿走。第二回合也一样,第二个游戏者也有这样一次机会。从第三个回合(又轮到第一个游戏者)开始,规则和Nim游戏一样。
如果你先拿,怎样才能保证获胜?如果可以获胜的话,还要让第一回合拿的火柴总数尽量小。
 

Input

第一行为整数k。即火柴堆数。第二行包含k个不超过109的正整数,即各堆的火柴个数。

Output

输出第一回合拿的火柴数目的最小值。如果不能保证取胜,输出-1。

Sample Input

6

5 5 6 6 5 5

Sample Output

21

HINT

k<=100


传统Nim游戏先手必胜当且仅当石子异或和不为0.

也就是说后手要尽可能选择一些数,是剩下的异或和为0.

转化为这样一个问题,删去尽可能少的石子,使得剩下的不存在一种方案使拿出的异或和为0。

即选择尽可能多的石子使他们线性不相关。

线性基贪心即可。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
int b[50],a[150],n;
ll sum;
bool cmp(int x,int y) {return x>y;}
bool insert(int x) {
int i;
for(i=30;i>=0;i--) {
if(x&(1<<i)) {
if(b[i]) x^=b[i];
else {
b[i]=x; return 1;
}
}
}
return 0;
}
int main() {
scanf("%d",&n);
int i;
for(i=1;i<=n;i++) scanf("%d",&a[i]),sum+=a[i];
sort(a+1,a+n+1,cmp);
for(i=1;i<=n;i++) {
if(insert(a[i])) sum-=a[i];
}
printf("%lld\n",sum);
}

  

BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论的更多相关文章

  1. 【BZOJ3105】[cqoi2013]新Nim游戏 贪心+线性基

    [BZOJ3105][cqoi2013]新Nim游戏 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个 ...

  2. [CQOI2013]新Nim游戏(线性基)

    P4301 [CQOI2013]新Nim游戏 题目描述 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴. ...

  3. bzoj 3105: [cqoi2013]新Nim游戏【线性基+贪心】

    nim游戏的先手必胜条件是所有堆的火柴个数异或和为0,也就是找一个剩下火柴堆数没有异或和为0的子集的方案,且这个方案保证剩下的火柴个数总和最大 然后我就不会了,其实我到现在也不知道拟阵是个什么玩意-- ...

  4. 洛谷P4301 [CQOI2013]新Nim游戏(线性基)

    传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 后手在什么时候能够获胜呢?只有在他能构造出一个子集的异或和为0时(这个应该是nim博弈的结论了吧) 那么为了必胜,我们就要取到没有子集异或和为0为止 ...

  5. 【题解】 bzoj3105: [cqoi2013]新Nim游戏 (线性基+贪心)

    bzoj3105,懒得复制 Solution: 首先你要有一个前置技能:如果每堆石子异或和为\(0\),则先手比输 这题我们怎么做呢,因为我们没人要先取掉几堆,为了赢对方一定会使剩下的异或和为\(0\ ...

  6. bzoj3105 [cqoi2013]新Nim游戏——贪心+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3105 首先,要先手必胜,就不能取后让剩下的火柴中存在异或和为0的子集,否则对方可以取成异或和 ...

  7. AcWing 229. 新NIM游戏 (线性基+博弈论)打卡

    题目:https://www.acwing.com/problem/content/description/231/ 题意:给出n堆石子,然后第一回合,A玩家可以随便拿多少堆石子,第二回合B玩家随便拿 ...

  8. 【BZOJ3105】新Nim游戏(线性基)

    [BZOJ3105]新Nim游戏(线性基) 题面 BZOJ Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以 ...

  9. BZOJ3105: [cqoi2013]新Nim游戏 博弈论+线性基

    一个原来写的题. 既然最后是nim游戏,且玩家是先手,则希望第二回合结束后是一个异或和不为0的局面,这样才能必胜. 所以思考一下我们要在第一回合留下线性基 然后就是求线性基,因为要取走的最少,所以排一 ...

随机推荐

  1. Epic Moments

    网络流序号要考虑超级源和超级汇 SAP要记得即使还原当前弧 二分图匹配中v.w要取局部变量 RMQ时记得开大数组 树链剖分记得结点要变为线段树中的下标

  2. bzoj5108 [CodePlus2017]可做题 位运算dp+离散

    [CodePlus2017]可做题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 87  Solved: 63[Submit][Status][Dis ...

  3. bzoj3875 【Ahoi2014】骑士游戏 spfa处理后效性动规

    骑士游戏 [故事背景] 长期的宅男生活中,JYY又挖掘出了一款RPG游戏.在这个游戏中JYY会 扮演一个英勇的骑士,用他手中的长剑去杀死入侵村庄的怪兽. [问题描述] 在这个游戏中,JYY一共有两种攻 ...

  4. react.js 渲染一个列表的实例

    //引入模块 import React,{Component} from 'react'; import ReactDOM from 'react-dom'; //定义一个要渲染的数组 let use ...

  5. SpringBoot自定义Filter

    SpringBoot自定义Filter SpringBoot自动添加了OrderedCharacterEncodingFilter和HiddenHttpMethodFilter,当然我们可以自定 义F ...

  6. 利用PHP SOAP实现WEB SERVICE[转载]

    php有两个扩展可以实现web service,一个是NuSoap,一个是php 官方的soap扩展,由于soap是官方的,所以我们这里以soap来实现web service.由于默认是没有打开soa ...

  7. Linux审计sudo

    Linux日志审计项目案例实战(生产环境日志审计项目解决方案) https://www.linuxidc.com/Linux/2015-07/120501.htm

  8. [Bzoj1767][Ceoi2009]harbingers (树上斜率优化)

    1767: [Ceoi2009]harbingers Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 451  Solved: 120[Submit][S ...

  9. HTML DOM对象的属性和方法介绍(原生JS方法)

    HTML DOM对象的属性和方法介绍 DOM 是 Document Object Model(文档对象模型)的缩写. DOM(文档对象模型)是针对HTML和XML文档的一个API(应用程序编程接口), ...

  10. [转] Scalers:刻意练习的本质就是持续行动+刻意学习

    原文: http://www.scalerstalk.com/1264-peak-conscious ------------------------------------------------- ...