整数划分

时间限制:3000 ms  |  内存限制:65535 KB
难度:3
 
描述
将正整数n表示成一系列正整数之和:n=n1+n2+…+nk, 
其中n1≥n2≥…≥nk≥1,k≥1。 
正整数n的这种表示称为正整数n的划分。求正整数n的不 
同划分个数。 
例如正整数6有如下11种不同的划分: 
6; 
5+1; 
4+2,4+1+1; 
3+3,3+2+1,3+1+1+1; 
2+2+2,2+2+1+1,2+1+1+1+1; 
1+1+1+1+1+1。

 
输入
第一行是测试数据的数目M(1<=M<=10)。以下每行均包含一个整数n(1<=n<=10)。
输出
输出每组测试数据有多少种分法。
样例输入
1
6
样例输出
11
来源
[苗栋栋]原创
上传者
苗栋栋
 

此题可以用递归和动态规划两种方法来解决,首先介绍动态规划的,数组dp[N][M]表示N为被划分数,M为划分数的最大值,此题M==N,故即求dp[N][N];

1>状态转移方程:

dp[N][M]=dp[N][M-1]+dp[N-M][M];

该怎样理解呢?这里分两步:

Step 1:所划分的最大数不包括M,即每个划分数都是小于M的,此时总数为dp[N][M-1].

Step 2:所划分的最大数包括M,那么这一步被划分数就应该减去一个M,此时总数为dp[N-M][M].

到这里就是完整的思路了,应该注意的是上面的划分,划分数里有重复的数,那么如果要求划分数没有重复的呢,该怎样求呢?

这里的状态转移方程和上面就有点细微区别了.先来看看方程:

2>dp[N][M]=dp[N][M-1]+dp[N-M][M-1];

其实联系1中的步骤就不难理解了,同样分为两步:

Step 1:所划分的最大数不包括M,即每个划分数都是小于M的,此时总数也是dp[N][M-1].

Step 2:所划分的最大数包括M,那么划分就的相应的减去M,注意到不能重复,即M划分数出现的次数只能为1.所以M就得换成M-1了,即dp[N-M][M-1].

3>在拓展一下,要是划分的个数为确定的数呢?即dp[N][K].表示N被划分成K个数.

这时状态转移方程就为

dp[N][K]=dp[N-K][K]+dp[N-1][K-1].

应该这样理解:

Step 1:被划分的K个数中不包括1,那么就应该先自动的为其分配1,K个数共N-K,剩下的数自由分配,总能保证其值大于2,即dp[N-K][K].

Step 2:存在一个数为1的情况,此时剩下的N-1分给K-1个数,即dp[N-1][K-1].

代码如下:

 #include <stdio.h>
#include <string.h>
int dp[][];
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int i,j,n;
memset(dp,,sizeof(dp));
scanf("%d",&n);
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
if(i>j)
dp[i][j]=dp[i-j][j]+dp[i][j-];
else if(i==j)
dp[i][j]=dp[i][j-]+;
else if(i<j)
dp[i][j]=dp[i][i];
}
}
printf("%d\n",dp[n][n]);
}
return ;
}

下面来介绍递归的方法:

整数划分问题是算法中的一个经典命题之一,有关这个问题的讲述在讲解到递归时基本都将涉及。所谓整数划分,是指把一个正整数n写成如下形式:

n=m1+m2+...+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分。

如果{m1,m2,...,mi}中的最大值不超过m,即max(m1,m2,...,mi)<=m,则称它属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);

例如当n=4时,他有5个划分,{4},{3,1},{2,2},{2,1,1},{1,1,1,1};

注意4=1+3 和 4=3+1被认为是同一个划分。

该问题是求出n的所有划分个数,即f(n, n)。下面我们考虑求f(n,m)的方法;

1.递归法:

根据n和m的关系,考虑以下几种情况:

(1)当n=1时,不论m的值为多少(m>0),只有一种划分即{1};

(2) 当m=1时,不论n的值为多少,只有一种划分即n个1,{1,1,1,...,1};

(3) 当n=m时,根据划分中是否包含n,可以分为两种情况:

(a). 划分中包含n的情况,只有一个即{n};

(b). 划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分。

因此 f(n,n) =1 + f(n,n-1);

(4) 当n<m时,由于划分中不可能出现负数,因此就相当于f(n,n);

(5) 但n>m时,根据划分中是否包含最大值m,可以分为两种情况:

(a). 划分中包含m的情况,即{m, {x1,x2,...xi}}, 其中{x1,x2,... xi} 的和为n-m,因此这种情况下

为f(n-m,m)

(b). 划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分,个数为f(n,m-1);

因此 f(n, m) = f(n-m, m)+f(n,m-1);

综上所述:

f(n, m)=   1;                (n=1 or m=1)

f(n, n);                        (n<m)

1+ f(n, m-1);                (n=m)

f(n-m,m)+f(n,m-1);      (n>m)

代码如下:

 #include <stdio.h>
int f(int n,int m) // fun(n, m)表示将整数 n 划分为最大数不超过 m 的划分
{
if(n==||m==)
return ;
else if(m>n)
return f(n,n);
else if(m==n)// 此时也是两部分,如果含有 m 则只有一种只含有 m 的划分,如果不含有 m 则转化为最大数不超过 m-1 的划分
return f(n,m-)+;
else if(m<n) // 此时将问题转化为两部分 1.划分中含有 m; 2.划分中不含 m
return f(n,m-)+f(n-m,m);
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
printf("%d\n",f(n,n));
}
return ;
}

nyoj_90_整数划分_201403161553的更多相关文章

  1. 51nod p1201 整数划分

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2, ...

  2. 2014北大研究生推免机试(校内)-复杂的整数划分(DP进阶)

    这是一道典型的整数划分题目,适合正在研究动态规划的同学练练手,但是和上一个随笔一样,我是在Coursera中评测通过的,没有找到适合的OJ有这一道题(找到的ACMer拜托告诉一声~),这道题考察得较全 ...

  3. 整数划分 (区间DP)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

  4. nyoj 90 整数划分

    点击打开链接 整数划分 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述 将正整数n表示成一系列正整数之和:n=n1+n2+-+nk,  其中n1≥n2≥-≥nk≥1,k≥ ...

  5. 整数划分 Integer Partition(二)

    本文是整数划分的第二节,主要介绍整数划分的一些性质. 一 先来弥补一下上一篇文章的遗留问题:要求我们所取的 (n=m1+m2+...+mi )中  m1 m2 ... mi连续,比如5=1+4就不符合 ...

  6. 整数划分 Integer Partition(一)

    话说今天百度面试,可能是由于我表现的不太好,面试官显得有点不耐烦,说话的语气也很具有嘲讽的意思,搞得我有点不爽.Whatever,面试中有问到整数划分问题,回答这个问题过程中被面试官搞的不胜其烦,最后 ...

  7. 51nod1201 整数划分

    01背包显然超时.然后就是一道神dp了.dp[i][j]表示j个数组成i的方案数.O(nsqrt(n)) #include<cstdio> #include<cstring> ...

  8. NYOJ-571 整数划分(三)

    此题是个非常经典的题目,这个题目包含了整数划分(一)和整数划分(二)的所有情形,而且还增加了其它的情形,主要是用递归或者说是递推式来解,只要找到了递推式剩下的任务就是找边界条件了,我觉得边界也是非常重 ...

  9. BZOJ1263: [SCOI2006]整数划分

    1263: [SCOI2006]整数划分 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 677  Solved: 332[Submit][Status] ...

随机推荐

  1. java实现中文或其他语言及标点符号等转换成unicode字符串,或unicode的16进制码转换回文字或符号等

    package org.analysisitem20181016.test; public class Code128Test2019052201 { public static final Stri ...

  2. 实现类似AOP的封装和配置

    这是张孝祥老师Java进阶讲解中最后一个视频,就是实现类似spring中的AOP的封装和配置,特别特别小型的一个框架雏形,但是spring中的核心思想还是体现出来了,真的厉害,张老师!!! 一.重点知 ...

  3. Nginx代理tcp端口实现负载均衡

    Nginx代理tcp端口实现负载均衡 1.修改配置文件 vi /etc/nginx/nginx.conf 添加如下配置: stream { ###XXX upstream notify {   has ...

  4. 任务十一:移动Web页面布局实践

    面向人群: 有一定HTML及CSS基础,想要尝试移动开发 难度: 中 重要说明 百度前端技术学院的课程任务是由百度前端工程师专为对前端不同掌握程度的同学设计.我们尽力保证课程内容的质量以及学习难度的合 ...

  5. 【OS_Linux】Linux下软件的安装与卸载

    1.Linux中软件安装包的分类 1) 一类是可执行的软件包,无需编译直接安装.在Windows中所有的软件包都是这种类型.安装完这个程序后,你就可以使用,但你看不到源程序.而且下载时要注意这个软件是 ...

  6. (45)zabbix报警媒介:SMS

    介绍 服务器安装串口GSM短信猫之后,zabbix可以使用它来发送短信通知给管理员,如下注意事项: 串行设备速度要与GSM猫相匹配(linux下默认为/dev/ttyS0),zabbix无法设置设置串 ...

  7. linux内核数据结构

    https://blog.csdn.net/zhangskd/article/details/11225301 在看ip_acct.c相关代码时看到大量使用了 hlist_nulls_for_each ...

  8. Shell脚本的条件测试与比较

    Shell脚本的条件测试与比较 一.shell脚本的条件测试 通常,在bash的各种条件结构和流程控制结构中都要进行各种测试,然后根据测试结构执行不同的操作,有时也会与if等条件语句相结合,来完成测试 ...

  9. verilog behaviral modeling -- procedural timing contronls

    1.delay control : an expression specifies the time duration between initially encountering the state ...

  10. find 命令search使用

    GNU在目录树中查找的时候,是根据所给的名字从根节点开始从左到右匹配.根据优先级规则,直到在某一个节点找到结果了才会移动到下一个文件名字. 1.找空目录 find  ./path -depth -ty ...