P1775 古代人的难题_NOI导刊2010提高(02)

P1936 水晶灯火灵

斐波那契数列

1.x,y∈[1…k],且x,y,k∈Z

2.(x^2-xy-y^2)^2=1

给你一个整数k,求一组满足上述条件的x,y并且使得x^2+y^2的值最大。

小FF得到答案后,用石笔将答案书写在羊皮纸上,那么就能到达王室的遗产所在地了。

证明可直接转%%大佬博客%%

化简式子:

$(x^2-xy-y^2)^2=1$

$(y^2+xy-x^2)^2=1$

$((x+y)^2+xy+2*x^2)^2=1$

$((x+y)^2+(x+y)*x+x^2)^2=1$

斐波那契数列的性质之一:

${f_n}^2-f_{n-1}*f_{n+1}=-1^{n-1}$

把$f_{n+1}$替换成$f_n+f_{n-1}$

${f_n}^2-f_{n}*f_{n-1}-{f_{n-1}}^2=-1^{n-1}$

然后就发现这两个式子很像

我们要求$x^2+y^2$的最大值。

就是求${f[n]}^2+{f[n-1]}^2$的最大值。

#include<iostream>
#include<cstdio> #define N 10000
#define LL long long
using namespace std; LL f[N],n; int main()
{
scanf("%lld",&n);
f[]=f[]=;
for(int i=;;i++){
f[i]=f[i-]+f[i-];
if(f[i]>n){
printf("%lld %lld\n",f[i-],f[i-]);
return ;
}
} return ;
}

洛谷——P1775 古代人的难题_NOI导刊2010提高(02)&& P1936 水晶灯火灵(斐波那契数列)的更多相关文章

  1. 洛谷—— P1775 古代人的难题_NOI导刊2010提高(02)

    P1775 古代人的难题_NOI导刊2010提高(02) 题目描述 门打开了,里面果然是个很大的厅堂.但可惜厅堂内除了中央的一张羊皮纸和一支精致的石笔,周围几具骷髅外什么也没有.难道这就是王室的遗产? ...

  2. 洛谷P1936 水晶灯火灵 P1775 古代人的难题_NOI导刊2010提高(02)【重题请做P1936】

    首先我要说明,此题(古代人的难题)与水晶灯火灵是一模一样的! 古代人的难题 (File IO): input:puzzle.in output:puzzle.out 时间限制: 1000 ms  空间 ...

  3. luogu P1775 古代人的难题_NOI导刊2010提高(02)(斐波纳契+数学)

    题意 已知x,y为整数,且满足以下两个条件: 1.x,y∈[1…k],且x,y,k∈Z 2.(x^2-xy-y^2)^2=1 给你一个整数k,求一组满足上述条件的x,y并且使得x^2+y^2的值最大. ...

  4. 洛谷P1771 方程的解_NOI导刊2010提高(01)

    题目描述 佳佳碰到了一个难题,请你来帮忙解决. 对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数), ...

  5. 洛谷 P1807 最长路_NOI导刊2010提高(07) 题解

    P1807 最长路_NOI导刊2010提高(07) 题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算 ...

  6. 洛谷 P1807 最长路_NOI导刊2010提高(07)

    最长路 #include <iostream> #include <cstdio> #include <cstring> #include <queue> ...

  7. 洛谷 P1807 最长路_NOI导刊2010提高(07)题解

    相当与一个拓扑排序的模板题吧 蒟蒻的辛酸史 题目大意:给你一个有向无环图,让你求出1到n的最长路,如果没有路径,就输出-1 思路:一开始以为是一个很裸的拓扑排序 就不看题目,直接打了一遍拓扑排序 然后 ...

  8. 洛谷P1807 最长路_NOI导刊2010提高(07)

    //拓扑排序求最长路 #include<bits/stdc++.h> #include<queue> using namespace std; const int INF=0x ...

  9. 图论--最长路--洛谷P1807 最长路_NOI导刊2010提高(07)

    题目描述 设G为有n个顶点的有向无环图,G中各顶点的编号为1到n,且当为G中的一条边时有i < j.设w(i,j)为边的长度,请设计算法,计算图G中<1,n>间的最长路径. 输入格式 ...

随机推荐

  1. URL 字段简析

    URL:统一资源定位符:URL是uri的一个子集,另外一个子集是URN. URL语法:(来自HTTP权威指南中文版P29) 组件 描述 默认值 方案 访问服务器以获取资源时要使用哪种协议 无 用户 某 ...

  2. Vijos 1451 圆环取数 【区间DP】

    背景 小K攒足了路费来到了教主所在的宫殿门前,但是当小K要进去的时候,却发现了要与教主守护者进行一个特殊的游戏,只有取到了最大值才能进去Orz教主…… 描述 守护者拿出被划分为n个格子的一个圆环,每个 ...

  3. CPU卡详解【转】

    本文转载自:http://blog.csdn.net/logaa/article/details/7571805 第一部分 CPU基础知识 一.为什么用CPU卡 IC卡从接口方式上分,可以分为接触式I ...

  4. CPU卡的读写【转】

    本文转载自:http://blog.csdn.net/logaa/article/details/7465226 一般来说,对存储卡和逻辑加密卡操作,使用接触式IC卡通用读写器:对CPU卡使用CPU卡 ...

  5. Silverlight调用一般性处理程序模拟Silverlight调用WCF效果(2)

    [置顶] Silverlight调用一般性处理程序模拟Silverlight调用WCF效果(2) 分类: 技术2012-03-31 12:51 548人阅读 评论(0) 收藏 举报 silverlig ...

  6. Python Tricks(十九)—— switch 的实现

    python 原生语法不支持 switch,体现了 Python 大道至简的设计思路,有时为了避免啰嗦的 if elif等判断语句,我们可以用字典来代替 switch 的各分支,也即建立表达式和操作的 ...

  7. 我为什么从python转向go

    应puppet大拿刘宇的邀请,我去西山居运维团队做了一个简短分享,谈谈为什么我要将我们的项目从python转向go. 坦白的讲,在一帮python用户面前讲为什么放弃python转而用go其实是一件压 ...

  8. nginx开发(二)配置mp4文件在线播放

    1: 第一步先开打nginx的文件夹遍历功能 vi /usr/local/nginx/conf/nginx.conf #编辑配置文件,在http {下面添加以下内容: autoindex on; #开 ...

  9. .gitignore(转载)

    转自:http://blog.csdn.net/liuqiaoyu080512/article/details/8648266 git 可以管理所有文件的变更, 但并不是所有文件都有意义. 大部分二进 ...

  10. 使用Advanced Installer14.3 简单打包windows窗体应用程序

    1.新建项目工程(我使用的是企业版) 2.完善产品细节 3.应用程序文件夹 a.自动同步文件夹(也可以右键添加文件或文件夹) b.新建卸载快捷方式 c.卸载清理 4.安装参数 5.媒介配置 6.生成或 ...