bzoj1025 [SCOI2009]游戏——因数DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1025
这篇博客写得真好呢:https://www.cnblogs.com/phile/p/4473192.html
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,pri[],cnt;
long long f[][],ans;
bool vis[];
void init()
{
for(int i=;i<=n;i++)
{
if(!vis[i])vis[i]=,pri[++cnt]=i;
for(int j=;j<=cnt&&i*pri[j]<=n;j++)
{
vis[i*pri[j]]=;
if(i%pri[j]==)break;
}
}
}
int main()
{
scanf("%d",&n);
init();
f[][]=;
for(int i=;i<=cnt;i++)
{
for(int j=;j<=n;j++)f[i][j]+=f[i-][j];
for(int j=;j<=n;j++)
for(int k=pri[i];j-k>=;k*=pri[i])
f[i][j]+=f[i-][j-k];
}
for(int i=;i<=n;i++)
ans+=f[cnt][i];
printf("%lld",ans);
return ;
}
bzoj1025 [SCOI2009]游戏——因数DP的更多相关文章
- BZOJ 1025: [SCOI2009]游戏( 背包dp )
显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...
- bzoj千题计划116:bzoj1025: [SCOI2009]游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...
- BZOJ1025 [SCOI2009]游戏 【置换群 + 背包dp】
题目链接 BZOJ1025 题解 题意就是问一个\(1....n\)的排列在同一个置换不断重复下回到\(1...n\)可能需要的次数的个数 和置换群也没太大关系 我们只需知道同一个置换不断重复,实际上 ...
- [BZOJ1025][SCOI2009]游戏 DP+置换群
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目中的排数就是多少次回到原来的序列.很显然对于题目所描述的任意一种对应法则,其中一 ...
- 2018.09.02 bzoj1025: [SCOI2009]游戏(计数dp+线筛预处理)
传送门 要将所有置换变成一个轮换,显然轮换的周期是所有置换长度的最小公倍数. 于是我们只需要求长度不超过n,且长度最小公倍数为t的不同置换数. 而我们知道,lcm只跟所有素数的最高位有关. 因此lcm ...
- bzoj1025: [SCOI2009]游戏(DP)
题目大意:将长度为n的排列作为1,2,3,...,n的置换,有可能置换x次之后,序列又回到了1,2,3,...,n,求所有可能的x的个数. 看见这种一脸懵逼的题第一要务当然是简化题意...我们可以发现 ...
- [BZOJ1025] [SCOI2009]游戏 解题报告
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...
- BZOJ1025: [SCOI2009]游戏
Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对 ...
- bzoj1025: [SCOI2009] 游戏 6
DP. 每种排法的长度对应所有循环节长度的最小公倍数. 所以排法总数为和为n的几个数的最小公倍数的总数. #include<cstdio> #include<algorithm> ...
随机推荐
- 某考试 T1 function
(数据范围 n<=10^9 ,T<=10 ) 首先,我来证明一下 Σμ(d) * σ(i/d)^2 = σ(i^2) 相信做过约数个数和的童鞋都可以完成从右式推到左式,那么我现在就说一下怎 ...
- SpringBoot整合freemarker中自定义标签获取字典表的数据
因为在前端要根据字典表中的数据去将1.2这些值转换成对应的文字解释 1.首先要创建一个类去实现 TemplateDirectiveModel 类 @Component public class Dic ...
- java中的数据转换与前置,后置加加
public class Demo{ public static void main(String [] args){ int num=2; System.out.println(num++);//后 ...
- android 子菜单
<!-- 定义基础布局LinearLayout --> <LinearLayout xmlns:android="http://schemas.android.com/ap ...
- 用df命令显示磁盘使用量和占用率。
使用“df -k”命令,以k为单位显示磁盘使用量和占用率. root@gsg43:/tmp# df -kFilesystem 1K-blocks Used Available Use% ...
- SolidEdge 如何绘制断裂剖视图 局部剖视图
1 点击局部放大图,然后点击绘制按钮,然后点击选择要绘制的视图 2 绘制封闭的局部剖视图的剖面线(必须封闭,点击最后一个点封闭之后会变成蓝色虚线) 3 修改深度(不一定要在下图的右下角修改深度 ...
- UVa567_Risk(最短路)(小白书图论专题)
解题报告 option=com_onlinejudge&Itemid=8&category=7&page=show_problem&problem=508"& ...
- Andriod 从源码的角度详解View,ViewGroup的Touch事件的分发机制
转自:xiaanming的博客(http://blog.csdn.net/xiaanming/article/details/21696315) 今天这篇文章主要分析的是Android的事件分发机制, ...
- MVC Page分页控件
MVCPage帮助类 控制器代码 public ActionResult Article(int? page) { //Session["ArticleClass"] = cont ...
- 【转载】一分钟了解两阶段提交2PC(运营MM也懂了)
上一期分享了"一分钟了解mongoDB"[回复"mongo"阅读],本期将分享分布式事务的一种实现方式2PC. 一.概念 二阶段提交2PC(Two phase ...