The JVM Architecture Explained
转自:https://dzone.com/articles/jvm-architecture-explained?oid=18544920
Every Java developer knows that bytecode will be executed by JRE (Java Runtime Environment). But many doesn't know the fact that JRE is the implementation of Java Virtual Machine (JVM), which analyzes the bytecode, interprets the code, and executes it. It is very important as a developer that we should know the Architecture of the JVM, as it enables us to write code more efficiently. In this article, we will learn more deeply about the JVM architecture in Java and the different components of the JVM.
What is the JVM?
A Virtual Machine is a software implementation of a physical machine. Java was developed with the concept of WORA (Write Once Run Anywhere), which runs on a VM. Thecompiler compiles the Java file into a Java .class file, then that .class file is input into the JVM, which Loads and executes the class file. Below is a diagram of the Architecture of the JVM.
JVM Architecture Diagram
How Does the JVM Work?
As shown in the above architecture diagram, the JVM is divided into three main subsystems:
- Class Loader Subsystem
- Runtime Data Area
- Execution Engine
1. Class Loader Subsystem
Java's dynamic class loading functionality is handled by the class loader subsystem. It loads, links. and initializes the class file when it refers to a class for the first time at runtime, not compile time.
1.1 Loading
Classes will be loaded by this component. Boot Strap class Loader, Extension class Loader, and Application class Loader are the three class loader which will help in achieving it.
- Boot Strap ClassLoader – Responsible for loading classes from the bootstrap classpath, nothing but rt.jar. Highest priority will be given to this loader.
- Extension ClassLoader – Responsible for loading classes which are inside ext folder (jre\lib).
- Application ClassLoader –Responsible for loading Application Level Classpath, path mentioned Environment Variable etc.
The above Class Loaders will follow Delegation Hierarchy Algorithm while loading the class files.
1.2 Linking
- Verify – Bytecode verifier will verify whether the generated bytecode is proper or not if verification fails we will get the verification error.
- Prepare – For all static variables memory will be allocated and assigned with default values.
- Resolve – All symbolic memory references are replaced with the original referencesfrom Method Area.
1.3 Initialization
This is the final phase of Class Loading, here all static variables will be assigned with the original values, and the static block will be executed.
2. Runtime Data Area
The Runtime Data Area is divided into 5 major components:
- Method Area – All the class level data will be stored here, including static variables. There is only one method area per JVM, and it is a shared resource.
- Heap Area – All the Objects and their corresponding instance variables and arrays will be stored here. There is also one Heap Area per JVM. Since the Method and Heap areas share memory for multiple threads, the data stored is not thread safe.
- Stack Area – For every thread, a separate runtime stack will be created. For every method call, one entry will be made in the stack memory which is called as Stack Frame. All local variables will be created in the stack memory. The stack area is thread safe since it is not a shared resource. The Stack Frame is divided into three subentities:
- Local Variable Array – Related to the method how many local variables are involved and the corresponding values will be stored here.
- Operand stack – If any intermediate operation is required to perform, operand stackacts as runtime workspace to perform the operation.
- Frame data – All symbols corresponding to the method is stored here. In the case of any exception, the catch block information will be maintained in the frame data.
- PC Registers – Each thread will have separate PC Registers, to hold the address of current executing instruction once the instruction is executed the PC register will be updated with the next instruction.
- Native Method stacks – Native Method Stack holds native method information. For every thread, a separate native method stack will be created.
3. Execution Engine
The bytecode which is assigned to the Runtime Data Area will be executed by the Execution Engine. The Execution Engine reads the bytecode and executes it piece by piece.
- Interpreter – The interpreter interprets the bytecode faster, but executes slowly. The disadvantage of the interpreter is that when one method is called multiple times, every time a new interpretation is required.
- JIT Compiler – The JIT Compiler neutralizes the disadvantage of the interpreter. The Execution Engine will be using the help of the interpreter in converting byte code, but when it finds repeated code it uses the JIT compiler, which compiles the entire bytecode and changes it to native code. This native code will be used directly for repeated method calls, which improve the performance of the system.
- Intermediate Code generator – Produces intermediate code
- Code Optimizer – Responsible for optimizing the intermediate code generated above
- Target Code Generator – Responsible for Generating Machine Code or Native Code
- Profiler – A special component, responsible for finding hotspots, i.e. whether the method is called multiple times or not.
- Garbage Collector: Collects and removes unreferenced objects. Garbage Collection can be triggered by calling "System.gc()", but the execution is not guaranteed. Garbage collection of the JVM collects the objects that are created.
Java Native Interface (JNI): JNI will be interacting with the Native Method Libraries and provides the Native Libraries required for the Execution Engine.
Native Method Libraries:It is a collection of the Native Libraries which is required for the Execution Engine.
The JVM Architecture Explained的更多相关文章
- Java虚拟机及运行时数据区
1.Java虚拟机的定义 Java虚拟机(Java Virtual Machine),简称JVM.当我们说起Java虚拟机时,可能指的是如下三种不同的东西: 抽象的虚拟机规范 规范的具体实现 一个运行 ...
- JVM 的 工作原理,层次结构 以及 GC工作原理
JVM Java 虚拟机 Java 虚拟机(Java virtual machine,JVM)是运行 Java 程序必不可少的机制.JVM实现了Java语言最重要的特征:即平台无关性.原理:编译后的 ...
- JVM 及 垃圾回收机制原理
JVM Java 虚拟机 Java 虚拟机(Java virtual machine,JVM)是运行 Java 程序必不可少的机制.JVM实现了Java语言最重要的特征:即平台无关性.原理:编译后的 ...
- JVM和GC的工作原理
转载于https://uestc-dpz.github.io JVM Java 虚拟机 Java 虚拟机(Java virtual machine,JVM)是运行 Java 程序必不可少的机制.JVM ...
- Java Virtual Machine (JVM), Difference JDK, JRE & JVM – Core Java
By Chaitanya Singh | Filed Under: Learn Java Java is a high level programming language. A program wr ...
- Java虚拟机系列一:一文搞懂 JVM 架构和运行时数据区
前言 之前写博客一直比较随性,主题也很随意,就是想到什么写什么,对什么感兴趣就写什么.虽然写起来无拘无束,自在随意,但也带来了一些问题,每次写完一篇后就要去纠结下一篇到底写什么,看来选择太多也不是好事 ...
- 深入理解JVM(学习过程)
这,仅是我学习过程中记录的笔记.确定了一个待研究的主题,对这个主题进行全方面的剖析.笔记是用来方便我回顾与学习的,欢迎大家与我进行交流沟通,共同成长.不止是技术. 2020年02月06日22:43:0 ...
- Understanding Java Memory Model-理解java内存模型(JVM)
from https://medium.com/platform-engineer/understanding-java-memory-model-1d0863f6d973 Understanding ...
- Java Garbage Collection Basics--转载
原文地址:http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html Overview Purpose ...
随机推荐
- 8.30 "我什么都不会"
/* 抢名额第一场 GG "我什么都不会阿" 这场磕死在E题了 按说应该能想到费马小定理 毕竟p is a prime 别的队都过了 大家都比较熟悉的就只有这一个 然后还有I题一开 ...
- MapReduce01
================== Hadoop内核 | MapReduce(分布式计算框架) ================== 源于Google的MapReduce论文 ----------& ...
- 【总结】设备树对platform平台设备驱动带来的变化(史上最强分析)【转】
本文转载自:http://blog.csdn.net/fengyuwuzu0519/article/details/74375086 版权声明:本文为博主原创文章,转载请注明http://blog.c ...
- JavaScript Patterns 2.5 (Not) Augmenting Build-in Prototypes
Disadvantage Other developers using your code will probably expect the built-in JavaScript methods t ...
- hdu 6115(LCA 暴力)
Factory Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others)Total ...
- Java 输入输出流 (七)
1.什么是IO Java中I/O操作主要是指使用Java进行输入,输出操作. Java所有的I/O机制都是基于数据流进行输入输出,这些数据流表示了字符或者字节数据的流动序列.Java的I/O流提供了读 ...
- 不使用c的任何库函数 实现字符串到整数的转换 整数到字符串的转换
转载请标明出处:http://www.cnblogs.com/NongSi-Net/p/6805844.html 今天主要总结下:完成编程: 1.除printf函数之外,不用任何c语言库函数,实现将字 ...
- SceneView 追踪选择目标
在编辑器的Scene视图中追踪选择目标,调试动作用 SceneView这个类没有说明文档比较蛋疼 在update中调用SceneViewCameraFace2Target函数,编辑器的OnInspec ...
- codevs1258 关路灯(☆区间dp)
1258 关路灯 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 多瑞卡得到了一份有趣而高薪的工作.每天早晨他必须 ...
- IOC框架---什么是IOC
1 IoC理论的背景 我们都知道,在采用面向对象方法设计的软件系统中,它的底层实现都是由N个对象组成的,所有的对象通过彼此的合作,最终实现系统的业务逻辑. ...