斜率优化专题1——bzoj 1597 [Usaco2008 Mar] 土地购买 题解
转载请注明:http://blog.csdn.net/jiangshibiao/article/details/24387147
【原题】
1597: [Usaco2008 Mar]土地购买
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 1396 Solved: 480
[Submit][Status]
Description
农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ能够同一时候购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 可是土地的长宽不能交换. 假设FJ买一块3x5的地和一块5x3的地,则他须要付5x5=25.
FJ希望买下全部的土地,可是他发现分组来买这些土地能够节省经费. 他须要你帮助他找到最小的经费.
Input
* 第1行: 一个数: N
* 第2..N+1行: 第i+1行包括两个数,分别为第i块土地的长和宽
Output
* 第一行: 最小的可行费用.
Sample Input
100 1
15 15
20 5
1 100
输入解释:
共同拥有4块土地.
Sample Output
HINT
FJ分3组买这些土地: 第一组:100x1, 第二组1x100, 第三组20x5 和 15x15 plot. 每组的价格分别为100,100,300, 总共500.
Source
【分析】太神了!看了JokerPark大牛的博客,受益匪浅。可是有些地方開始还是没看懂,因此自己也推了半天公式。
设第i块地的长和宽是ai,bi。
①先考虑无效的边。设ai>=aj且bi>=bj,那么j一定是无效边。怎么求呢?首先我们把ai按升序排序,然后做一遍类似于单调队列的操作。枚举i,假设bi>=队列尾部的bj,那么尾指针就减1。由于a已经是升序排好了,ai>=aj是肯定的。
②去掉边后,我们还发现了一个有趣的性质。在队列中,由于a一定是升序排好的,那么b一定是降序的。(自己YY)
③于是DP方程呼之欲出:f[i]=max(f[i],f[j]+a[j+1]*b[i])。毫无疑问,这是一个超时的算法。如今就要推斜率优化了!!设在当前的状态f[i]时,从f[j]转移比f[k]优。那么f[j]+a[j+1]*b[i]<f[k]+a[k+1]*b[i]。化简一下:b[i]<(f[k]-f[j])/(a[j+1]-a[k+1])。说明,假设j和k满足上述要求,k能够无视了,由于j一定比k更优。依据这个,我们维护一个单调队列。
【代码】
#include<cstdio>
#include<algorithm>
#define N 50005
using namespace std;
struct arr{long long x,y;}a[N],b[N];
long long f[N],q[N],n,i,h,t,m;
bool cmp(arr a,arr b){return a.x<b.x||a.x==b.x&&a.y>b.y;}
int main()
{
scanf("%lld",&n);
for (i=1;i<=n;i++)
scanf("%lld%lld",&b[i].x,&b[i].y);
sort(b+1,b+n+1,cmp);
m=1;a[1].x=b[1].x;a[1].y=b[1].y;
for (i=2;i<=n;i++)
{
while (m&&b[i].y>a[m].y) m--;
a[++m].x=b[i].x;a[m].y=b[i].y;
}
h=1;t=1;q[1]=0;f[0]=0;
for (i=1;i<=m;i++)
{
while ((h<t)&&(a[i].x*(a[q[h]+1].y-a[q[h+1]+1].y)>f[q[h+1]]-f[q[h]])) h++;
f[i]=f[q[h]]+a[q[h]+1].y*a[i].x;
while ((h<t)&&(f[i]-f[q[t-1]])*(a[q[t]+1].y-a[i+1].y)>=(f[i]-f[q[t]])*(a[q[t-1]+1].y-a[i+1].y)) t--;
q[++t]=i;
}
printf("%lld",f[m]);
return 0;
}
斜率优化专题1——bzoj 1597 [Usaco2008 Mar] 土地购买 题解的更多相关文章
- BZOJ 1597: [Usaco2008 Mar]土地购买 [斜率优化DP]
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4026 Solved: 1473[Submit] ...
- BZOJ 1597: [Usaco2008 Mar]土地购买( dp + 斜率优化 )
既然每块都要买, 那么一块土地被另一块包含就可以不考虑. 先按长排序, 去掉不考虑的土地, 剩下的土地长x递增, 宽y递减 dp(v) = min{ dp(p)+xv*yp+1 } 假设dp(v)由i ...
- BZOJ 1597: [Usaco2008 Mar]土地购买【斜率优化+凸包维护】
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4989 Solved: 1847[Submit] ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 斜率优化
1597: [Usaco2008 Mar]土地购买 Time Limit: 10 Sec Memory Limit: 162 MB Description 农夫John准备扩大他的农场,他正在考虑N ...
- bzoj 1597 [Usaco2008 Mar]土地购买——斜率优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1597 又一道斜率优化dp.负数让我混乱.不过仔细想想还是好的. 还可以方便地把那个负号放到x ...
- BZOJ 1597 [Usaco2008 Mar]土地购买:斜率优化dp
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1597 题意: 有n块矩形土地,长为a[i],宽为b[i]. FJ想要将这n块土地全部买下来 ...
- bzoj 1597: [Usaco2008 Mar]土地购买【斜率优化】
按xy降序排序,把能被完全包含的去掉 然后就得到了x升序y降序的一个数组 然后方程就显然了:f[i]=min(f[j]+y[j+1]x[i]) 斜率优化转移 说起来我还不会斜率优化呢是不是该学一下了 ...
- BZOJ 1597: [Usaco2008 Mar]土地购买 动态规划 + 斜率优化
Code: #include<bits/stdc++.h> #define maxn 1000000 #define ll long long #define x(i) (b[i+1]) ...
- bzoj 1597: [Usaco2008 Mar]土地购买
Description 农 夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000 ...
随机推荐
- 第3节 mapreduce高级:12、mapreduce相关的参数调整
5.1 多job串联 一个稍复杂点的处理逻辑往往需要多个mapreduce程序串联处理,多job的串联可以借助mapreduce框架的JobControl实现 示例代码: ControlledJob ...
- mxnet.base.MXNetError: src/imperative/./imperative_utils.h:70: Check failed: inputs[i]->ctx().dev_mask() == ctx.dev_mask() (1 vs. 2)
mxnet 训练错误: mxnet.base.MXNetError: [14:42:22] src/imperative/./imperative_utils.h:70: Check failed: ...
- Python学习笔记(1)——Python的概述(Python的环境、变量、数据类型、基本运算)
Table of Contents 1. Python概述 1.1. Python基础知识 1.2. 运行环境 1.3. Python的格式 1.4. Python的变量. 2. Python的数据类 ...
- BZOJ 2039 人员雇佣 二元关系 最小割
题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...
- MySql-count(*)与count(id)与count(字段)之间的执行结果和性能分析
在mysql数据库中,当我们需要统计数据的时候,一定会用到count()这个方法,那么count(值)里面的这个值,到底应该怎么选择呢!常见有3种选择,(*,数字,列名),分别列出它们的执行结果和性能 ...
- 安装配置elasticsearch、安装elasticsearch-analysis-ik插件、mysql导入数据到elasticsearch、安装yii2-elasticsearch及使用
一.安装elasticsearch 获取elasticsearch的rpm:wget https://download.elastic.co/elasticsearch/release/org/ela ...
- Android Studio + Genymotion模拟器安装与配置
一.Android studio 下载与安装 https://developer.android.google.cn/studio/index.html 进入谷歌官方链接下载Android studi ...
- 76-Bears/Bulls Power,熊力/牛力震荡指标.(2015.7.1)
Bears/Bulls Power 熊力/牛力震荡指标 Power,熊力/牛力震荡指标.(2015.7.1)" title="76-Bears/Bulls Power,熊力/牛力震 ...
- maven项目运行tomcat7-maven-plugin:run时出现Caused by: java.lang.ClassNotFoundException: org.codehaus.plexus.util.Scanner(xjl456852原创)
使用tomcat7-maven-plugin插件运行web项目时, 出现下面错误: [WARNING] Error injecting: org.sonatype.plexus.build.incre ...
- 每天学点Python之collections
每天学点Python之collections 内容摘抄自:<python大法好>的每天学点Python之collections collections模块在内置数据类型(dict.list ...