1. AQS共享模式

  前面已经说过了AQS的原理及独享模式的源码分析,今天就来学习共享模式下的AQS的几个接口的源码。

  首先还是从顶级接口acquireShared()方法入手:

public final void acquireShared(int arg) {
if (tryAcquireShared(arg) < 0)
doAcquireShared(arg);
}

  与acquire()方法一样,tryAcquireShared()为自己是实现的对资源获取的接口,AQS对返回值的语义已经定义好了,小于0表示失败,0表示成功,但是没有剩余资源,大于0表示成功,且还有剩余资源,其他线程还可以去获取,所以这里的流程就是,先调用tryAcquireShared();当不能获取资源时,调用doAcquireShared()方法让线程进入等待队列。

  doAcquireShared(int)方法,该方法用于将当前线程放入到等待队列中等待,直到其他线程唤醒并成功获取到资源才开始执行。源码如下:

 private void doAcquireShared(int arg) {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
if (interrupted)
selfInterrupt();
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}

  将当前线程加入到等待队列队尾,并返回当前线程所在的节点,标记是否成功,判断是否被中断,获取当前节点的前驱,如果前驱不为空,如果前驱等于头节点,则表示当前线程被唤醒,因为头节点是持有资源的线程,当前节点可能会被头节点唤醒,尝试去获取资源,r>=0,表示获取成功,将当前节点设置为头节点,如果还有资源可以尝试唤醒下一个等待线程。判断是够被中断过,如果中断过,则清除中断标记,shouldParkAfterFailedAcquire()判断线程状态是否可以等待并找一个能够被唤醒的点进入等待,等着被unpark()或interrupt(),parkAndCheckInterrupt()使线程被waiting。

  跟独占模式相比,这里是将selfInterrupt()放到了doAcquireShared()中,具体为啥我也不知道,但是这里的问题是,当第一个线程执行完之后释放资源,可能释放的资源只有3个,但是当前线程需要4个,而后面一个线程只需要2个,再后一个线程只需要1个,这种情况下,当前线程也是不会去唤醒后两个线程的,它会继续等待着其他的线程释放资源,独享模式下这样没问题,但是在共享模式下,多个线程可以同时执行,这样的策略会使得后面的两个线程会因为没被唤醒而没法执行,其实也算是问题,这里是cas严格保证了入队顺序和出对顺序,降低了并发,但是却是保证了安全的。

  setHeadAndPropagate(Node, int)是将当前线程设置为头节点,当资源还有剩余的情况下去唤醒其他资源。

private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; // Record old head for check below
setHead(node);
/*
* Try to signal next queued node if:
* Propagation was indicated by caller,
* or was recorded (as h.waitStatus either before
* or after setHead) by a previous operation
* (note: this uses sign-check of waitStatus because
* PROPAGATE status may transition to SIGNAL.)
* and
* The next node is waiting in shared mode,
* or we don't know, because it appears null
*
* The conservatism in both of these checks may cause
* unnecessary wake-ups, but only when there are multiple
* racing acquires/releases, so most need signals now or soon
* anyway.
*/
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
Node s = node.next;
if (s == null || s.isShared())
doReleaseShared();
}
}

  setHead将当前节点设置为头节点,当资源还有剩余的情况下,唤醒当前节点的相邻节点。

  共享模式的流程就是尝试获取资源,获取资源失败,则进入等待,与独享模式相比,共享只是多了在资源剩余的情况下去唤醒其他线程的操作而已。

  releaseShared()共享模式下释放共享资源的顶级入口,释放指定量的资源,如果成功释放且允许唤醒其他线程来获取资源,则它会唤醒队列里的其他等待线程来获取资源,源码:

 public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}

  调用tryReleaseShared()尝试释放资源,这里的tryReleaseShared()也是自己实现的,成功,则调用doReleaseShared()唤醒后继节点,

  doReleaseShared()用于唤醒后继节点

  源码:

private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}

  自旋,通过unparkSuccessor()唤醒后继节点,这样就释放掉了资源。

  以上就是关于AQS共享模式的源码的分析。

2. CountDownLatch的使用及原理

  CountDownLatch是jdk并发包中提供的负责并发编程的类,它也是AQS中共享模式的一种运用,利用它可以实现类似于计数器的功能,比如当以个线程需要等待其他几个线程的结果,但是其他几个线程又需要并行的执行时,就可以利用该类来实现,这里我们以一个求和的程序来举例该类的用法,

  2.1 使用方式

  存在一个文件中有如下数据

12,13,20,40
50,60,80,90
50,23,40
16,13

  我们需要每一行用一个线程来进行加法计算,当所有线程执行完成后,将所有线程计算结果做一次汇总,实现如下:

  计算每一行之和的代码:

public void calc (String line, int index, CountDownLatch countDownLatch) {
String[] nus = line.split(",");
int total = 0;
for (String n : nus) {
total += Integer.parseInt(n);
}
nums[index] = total;
System.out.println(Thread.currentThread().getName() + " 执行计划任务..." + line + " 结果为:" + total);
countDownLatch.countDown();
}

  每一个线程执行计算完毕后都会调用countDownLatch.countDown();使得当前运行线程减一

计算总和的代码:

 public void sum () {
System.out.println(Thread.currentThread().getName() + "汇总线程开始执行...");
int total = 0;
for (int i = 0; i < nums.length; i++) {
total += nums[i];
}
System.out.println("总结果为:" + total);
}

  计算每一行之和的调用方式和计算总和的调用方式:

package com.wangx.thread.t7;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch; public class AddMain { public static void main(String[] args) {
//读取文件
final List<String> contents = readFile();
//初始化countDownLatch 有几个线程执行构造参数就传几个
final CountDownLatch countDownLatch = new CountDownLatch(contents.size());
int lineNum = contents.size();
final AddNumber addNumber = new AddNumber(lineNum);
//多个线程同时执行
for (int i = 0; i < lineNum; i++) {
final int k = i;
new Thread(new Runnable() {
@Override
public void run() {
addNumber.calc(contents.get(k), k, countDownLatch);
}
}).start();
} //等待着直到所有线程执行完之后执行下面的代码
try {
countDownLatch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
//执行汇总
addNumber.sum();
} private static List<String> readFile() {
List<String> contents = new ArrayList<>();
String line = null;
try {
BufferedReader bufferedReader = new BufferedReader(new FileReader("D:\\JavaDev\\spring\\thread\\src\\com\\wangx\\thread\\t7\\numers.txt"));
while ((line = bufferedReader.readLine()) != null) {
contents.add(line);
}
} catch (Exception e) {
e.printStackTrace();
}
return contents;
}
}

  先初始化CountDownLatch实例,构造参数为需要并行执行的线程个数,调用await()方法等待,知道所有并行执行的线程执行完成。

  2.2 实现原理(源码分析)

   首先看初始化的构造方法:

 public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}

  它实例化了一个内部同步器Sync,我们继续看Sync的构造:

 Sync(int count) {
setState(count);
}

  这里调用了AQS的方法,直接设置了AQS的状态,达到了初始化多少个资源的目的,因为AQS是提供一个原子的int类型state来维护状态的,我们的示例中初始化了contents.size()个资源,接下来看countDown()方法,

 public void countDown() {
sync.releaseShared(1);
}

  调用releaseShared()来释放资源,这是AQS原理的运用,我们这里主要看在CountDownLatch中tryReleaseShared()方法的实现:

  

protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}

  实现也很简单,状态为0,资源已经被释放,自旋,更改状态,示例当contents个线程调用countDown完毕之后nextc == 0;才会成立,此时的releaseShared()才回去唤醒其他的等待的线程,示例中是主线程在调用求和的方法。

  await()方法:

public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}

  同样是调用内部同步器的方法来执行,

  acquireSharedInterruptibly():

 public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}

  该方法的功能是获取当前获取资源,如果获取资源失败,则调用doAcquireSharedInterruptibly()将线程放入到等待队列中等待,

  doAcquireSharedInterruptibly()与doAcquireShared()相似,看源码:

 private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}

  两段代码都与前面共享模式时的doAcquireShared()方法功能相同,只是它是一个可中断的实现。

  这就是CountDownLatch的实现原理,先初始化资源状态,每个线程执行完成后将释放资源,更改状态,直到最后一个执行的线程释放完资源,此时状态为0时,尝试去唤醒等待的线程,也就是执行countdown·.await()的线程。

  这里就分享完了AQS的共享模式已经CountDownLatch的使用及原理,限于笔者水平有限,文中错误之处希望各位能够指出,谢谢!

原文 并发编程学习笔记(9)----AQS的共享模式源码分析及CountDownLatch使用及原理

并发编程学习笔记(9)----AQS的共享模式源码分析及CountDownLatch使用及原理的更多相关文章

  1. 并发编程学习笔记(8)----ThreadLocal的使用及源码分析

    1. ThreadLocal的理解 ThreadLocal,顾名思义,就是线程的本地变量,ThreadLocal会为每个线程创建一个本地变量副本,使得使用ThreadLocal管理的变量在多线程的环境 ...

  2. 并发编程学习笔记(5)----AbstractQueuedSynchronizer(AQS)原理及使用

    (一)什么是AQS? 阅读java文档可以知道,AbstractQueuedSynchronizer是实现依赖于先进先出 (FIFO) 等待队列的阻塞锁和相关同步器(信号量.事件,等等)提供一个框架, ...

  3. 并发编程学习笔记(10)----并发工具类CyclicBarrier、Semaphore和Exchanger类的使用和原理

    在jdk中,为并发编程提供了CyclicBarrier(栅栏),CountDownLatch(闭锁),Semaphore(信号量),Exchanger(数据交换)等工具类,我们在前面的学习中已经学习并 ...

  4. 并发编程学习笔记(6)----公平锁和ReentrantReadWriteLock使用及原理

    (一)公平锁 1.什么是公平锁? 公平锁指的是在某个线程释放锁之后,等待的线程获取锁的策略是以请求获取锁的时间为标准的,即使先请求获取锁的线程先拿到锁. 2.在java中的实现? 在java的并发包中 ...

  5. Java并发编程学习笔记

    Java编程思想,并发编程学习笔记. 一.基本的线程机制 1.定义任务:Runnable接口 线程可以驱动任务,因此需要一种描述任务的方式,这可以由Runnable接口来提供.要想定义任务,只需实现R ...

  6. 并发编程学习笔记(15)----Executor框架的使用

    Executor执行已提交的 Runnable 任务的对象.此接口提供一种将任务提交与每个任务将如何运行的机制(包括线程使用的细节.调度等)分离开来的方法.通常使用 Executor 而不是显式地创建 ...

  7. JUC并发编程学习笔记

    JUC并发编程学习笔记 狂神JUC并发编程 总的来说还可以,学到一些新知识,但很多是学过的了,深入的部分不多. 线程与进程 进程:一个程序,程序的集合,比如一个音乐播发器,QQ程序等.一个进程往往包含 ...

  8. 并发编程学习笔记(14)----ThreadPoolExecutor(线程池)的使用及原理

    1. 概述 1.1 什么是线程池 与jdbc连接池类似,在创建线程池或销毁线程时,会消耗大量的系统资源,因此在java中提出了线程池的概念,预先创建好固定数量的线程,当有任务需要线程去执行时,不用再去 ...

  9. 并发编程学习笔记(13)----ConcurrentLinkedQueue(非阻塞队列)和BlockingQueue(阻塞队列)原理

    · 在并发编程中,我们有时候会需要使用到线程安全的队列,而在Java中如果我们需要实现队列可以有两种方式,一种是阻塞式队列.另一种是非阻塞式的队列,阻塞式队列采用锁来实现,而非阻塞式队列则是采用cas ...

随机推荐

  1. Java总结之网络

    [网络基础概念] 什么是计算机网络: 把分布在不同地理区域的计算机与专门的外部设备用通信线路互连成一个规模大.功能强的网络系统,从而使众多的计算机能够方便的互相传递信息,共享硬件.软件.数据信息等资源 ...

  2. Cracking the Coding Interview 150题(二)

    3.栈与队列 3.1 描述如何只用一个数组来实现三个栈. 3.2 请设计一个栈,除pop与push方法,还支持min方法,可返回栈元素中的最小值.pop.push和min三个方法的时间复杂度必须为O( ...

  3. 在阿里云域名https配置(nginx为例)

    如题: 在阿里云上注册了域名之后在阿里云域名控制台配置https: 1.在域名控制台选择要配置的域名,并在操作栏点击“解析” 2.在域名解析点击更多下的SSL进入到证书列表页,这里有收费的也有免费的, ...

  4. Open Source Computer Vision Library

    https://opencv.org/ OpenCV (Open Source Computer Vision Library) is released under a BSD license and ...

  5. HTTP要点概述:五,HTTP的无状态性,持久连接,Cookie

    一,HTTP的无状态性: HTTP 是一种不保存状态,无状态(stateless)协议.HTTP 协议自身不对请求和响应之间的通信状态进行保存.也就是说在 HTTP 这个级别,协议对于发送过的请求或响 ...

  6. 安装linux系统-CentOS-6.8-x86_64-minimal.iso

    1: 2: 3:单击[Next]继续安装. 4:安装语言,选择[Chinese(Simplified)(中文(简体))]菜单,单击[Next]继续. 5:系统键盘,选择[美国英语式]菜单,单击[下一步 ...

  7. Linux下Redis的安装和部署 详细

    一.Redis介绍 Redis是当前比较热门的NOSQL系统之一,它是一个key-value存储系统.和Memcache类似,但很大程度补偿了Memcache的不足,它支持存储的value类型相对更多 ...

  8. cisco secure ACS服务器搭建

    网上下载Cisco Secure Access Control System 5.2.iso的镜像,总共有两部分 http://pan.baidu.com/disk/home#path=%252FCi ...

  9. EasyUI Tree 树

    转自:http://www.jeasyui.net/plugins/185.html 通过 $.fn.tree.defaults 重写默认的 defaults. 树(tree)在网页中以树形结构显示分 ...

  10. KeepAlived的实现示例

    KeepAlived的实现示例 KeepAlived的实现 HA Cluster配置准备: 各节点时间必须同步 ntp(6), chrony(7) 1>在centos6上 ntpdate 172 ...