传送门

题解

倍增也好二分也好,果然复杂度只要和\(\log\)插上关系就没我啥事了……

首先由一个显而易见然而我完全没有发现的结论,设\(calc(l,r)\)表示区间\([l,r]\)的\(or\)起来加区间的\(and\)起来加区间的\(\gcd\)起来(就是题目里说的那个乱七八糟的东西)的值,那么我们固定右端点\(r\),左端点逐渐座椅的过程中,\(calc(l,r)\)的变化的次数为\(O(\log v)\),其中\(v\)是所有格子的值域

证明:左移的时候,\(or\)和\(and\)每次变化都会改变一个二进制位,最多改变\(O(\log v)\)次,而\(gcd\)因为每次都会变成自己的因子,值必然不超过之前的一半,所以总的变化次数也是\(O(\log v)\)

于是我们可以把之前的所有位置给分成\(O(\log v)\)段,其中每一段里面所有位置到当前位置的\(or,and,gcd\)都相等,这样可以用一个双向链表来维护,每次加入一个新位置的时候之前的区间不可能被拆分,只可能被合并。于是每一次加入之后合并,然后在这些所有的区间里找最优的就是了

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=3e5+5,L=19;
int Log[N],a[N],st1[N][L],st2[N][L],st3[N][L];
struct node{ll v1,v2,v3,f;}p[N],res;int las[N],nxt[N],h,t,tot;ll f[N];
int n,k;
int gcd(int x,int y){return y?gcd(y,x%y):x;}
void ins(const node &b){
p[++tot]=b,nxt[t]=tot,las[tot]=t;
t=tot,nxt[tot]=-1;
}
void del(R int pos){
nxt[las[pos]]=nxt[pos];
pos==t?t=las[pos]:las[nxt[pos]]=las[pos];
}
int query_or(R int l,R int r){
int k=Log[r-l+1];
return st1[l][k]|st1[r-(1<<k)+1][k];
}
int query_and(R int l,R int r){
int k=Log[r-l+1];
return st2[l][k]&st2[r-(1<<k)+1][k];
}
int query_gcd(R int l,R int r){
int k=Log[r-l+1];
return gcd(st3[l][k],st3[r-(1<<k)+1][k]);
}
void clr(){
tot=h=t=0;
memset(nxt,0,sizeof(nxt)),memset(las,0,sizeof(las));
memset(f,0xef,sizeof(f)),nxt[0]=-1;
}
int main(){
// freopen("testdata.in","r",stdin);
int T=read();fp(i,2,N-5)Log[i]=Log[i>>1]+1;
while(T--){
clr();
n=read(),k=read();
fp(i,1,n)st1[i][0]=st2[i][0]=st3[i][0]=a[i]=read();
fp(i,1,k)f[i-1]=read();
for(R int j=1;(1<<j)<=n;++j)fp(i,1,n-(1<<j)+1){
st1[i][j]=st1[i][j-1]|st1[i+(1<<j-1)][j-1];
st2[i][j]=st2[i][j-1]&st2[i+(1<<j-1)][j-1];
st3[i][j]=gcd(st3[i][j-1],st3[i+(1<<j-1)][j-1]);
}
fp(i,k,n){
int pos=nxt[h];
while(pos>=0){
p[pos].v1|=a[i],p[pos].v2&=a[i],p[pos].v3=gcd(p[pos].v3,a[i]);
pos=nxt[pos];
}res={query_or(i-k+1,i),query_and(i-k+1,i),query_gcd(i-k+1,i),f[i-k]};
ins(res),pos=nxt[h];
while(pos>=0&&nxt[pos]>=0){
if(p[pos].v1==p[nxt[pos]].v1&&
p[pos].v2==p[nxt[pos]].v2&&
p[pos].v3==p[nxt[pos]].v3)
cmax(p[pos].f,p[nxt[pos]].f),del(nxt[pos]);
pos=nxt[pos];
}pos=nxt[h];
while(pos>=0)cmax(f[i],p[pos].v1+p[pos].v2+p[pos].v3+p[pos].f),pos=nxt[pos];
}printf("%lld\n",f[n]);
}return 0;
}

P5167 xtq的神笔的更多相关文章

  1. P5168 xtq玩魔塔 [克鲁斯卡尔重构树+带修莫队]

    P5168 xtq玩魔塔 又是码农题- 利用克鲁斯卡尔重构树的性质 我们就可以得出 \(dep\) 值小的,肯定比 \(dep\) 大的值要优. 于是第二问就可以直接 LCA 求出来了- 至于第三问, ...

  2. 【Luogu P5168】xtq玩魔塔(Kruskal 重构树 & 树状数组 & set)

    Description 给定一个 \(n\) 个顶点,\(m\) 条边的无向联通图,点.边带权. 先有 \(q\) 次修改或询问,每个指令形如 \(\text{opt}\ x\ y\): \(\tex ...

  3. 学习大神笔记之 “MyBatis学习总结(一)”

    1.准备工作 软件:eclipse. mysql .navicat for mysql 包:mybatis-3.1.1.jar   mysql-connector-java-5.1.7-bin.jar ...

  4. Luogu P5168 xtq玩魔塔

    这题不错啊,结合了一些不太传统的姿势. 首先看到题目有一问从一个点到另一个点边权最小值.想到了什么? 克鲁斯卡尔生成树+倍增?好吧其实有一个更常用NB的算法叫克鲁斯卡尔重构树 (不会的可以看dalao ...

  5. 设计模式--单例模式(学习Learning hard大神笔记实践)

    根据大神博客园中的文章,自己亲手敲了一遍,对每个解说点都自己动手进行实践,收获颇丰,谢谢Learning hard大神,原文地址http://www.cnblogs.com/zhili/p/Desig ...

  6. [洛谷P5169]xtq的异或和

    题目大意:给你一张$n(n\leqslant10^5)$个点$m(m\leqslant3\times10^5)$条边的无向图,每条边有一个权值,$q(q\leqslant2^{18})$次询问,每次询 ...

  7. [洛谷P5166]xtq的口令

    题目大意:给出一张有向图,保证任何时候边都是从编号大的向编号小连.两个操作: $1\;l\;r:$表示若编号在区间$[l,r]$内的点被染色了,问至少还需要染多少个点才可以使得整张图被染色.一个点会被 ...

  8. P5169 xtq的异或和(FWT+线性基)

    传送门 我咋感觉我学啥都是白学-- 首先可以参考一下这一题,从中我们可以知道只要知道两点间任意一条路径以及整个图里所有环的线性基,就可以得知这两个点之间的所有路径的异或和 然而我好像并不会求线性基能张 ...

  9. P5168 xtq玩魔塔

    传送门 其实就是板子--只要会克鲁斯卡尔重构树和带修莫队就可以了 这么想着的我就调了将近一个下午-- 思路其实比较清晰,然而码量很大,细节贼多-- 不难看出只在最小生成树上走最优,于是建出克鲁斯卡尔重 ...

随机推荐

  1. ``Accordian&#39;&#39; Patience

    ``Accordian'' Patience  You are to simulate the playing of games of ``Accordian'' patience, the rule ...

  2. MySQL远程访问时非常慢的解决方案

    服务器放在局域网内进行测试时,数据库的访问速度还是很快.但当服务器放到外网后,数据库的访问速度就变得非常慢. 后来在网上发现解决方法,my.cnf里面添加 [mysqld] skip-name-res ...

  3. UWP 新手教程2——怎样实现自适应用户界面

    系列文章 UWP新手教程1--UWP的前世今生 如上文所说的,布局面板依据可用的屏幕空间.指定界面元素的大小和位置. 比如StackPanel 会水平或垂直排列界面元素.Grid 布局与CSS 中的表 ...

  4. NAND flash坏区

    计算容量 厂家所说的4G指的是4 000 000 000字节,是按1000进制计算的,而电脑是按照1024进制计算的,所以标称为4G的NAND Flash理论容量是4 000 000 000 / 10 ...

  5. 初识Restful(学习笔记)

    什么是Restful? REST -- Resource Representational State Transfer(表现层状态转移) 本质上是一种优雅的URL表达方式,描述资源的状态和状态的转移 ...

  6. JVM垃圾回收算法 及 垃圾收集器

    摘自<深入理解Java虚拟机> 一.什么是: GC算法是 方法论,那么垃圾收集器就是具体的 实现. 二.四种 垃圾回收算法 1.标记-清除算法:最基础的收集算法:不足有两点:1标记和清除两 ...

  7. (深入理解计算机系统) bss段,data段、text段、堆(heap)和栈(stack)

    bss段: bss段(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域. bss是英文Block Started by Symbol的简称. bss段属于静态内存分配. ...

  8. RK3288 GPIO 输出问题【转】

    本文转载自:http://m.blog.csdn.net/jiangdou88/article/details/50158673 #define GPIO_BANK0              (0 ...

  9. POJ1077 Eight —— 双向BFS

    主页面:http://www.cnblogs.com/DOLFAMINGO/p/7538588.html (代码一直在精简完善……) 代码一:两个BFS, 两段代码: 用step控制“你一步, 我一步 ...

  10. Oracle10G各版本下载以及补丁地址

    Oracle Database 10g Release 2 (10.2.0.1.0) Enterprise/Standard Edition for Microsoft Windows (32-bit ...