Cow Exhibition (01背包)
fun..."
- Cows with Guns by Dana Lyons
The cows want to prove to the public that they are both smart and fun. In order to do this, Bessie has organized an exhibition that will be put on by the cows. She has given each of the N (1 <= N <= 100) cows a thorough interview and determined two values for each cow: the smartness Si (-1000 <= Si <= 1000) of the cow and the funness Fi (-1000 <= Fi <= 1000) of the cow.
Bessie must choose which cows she wants to bring to her exhibition. She believes that the total smartness TS of the group is the sum of the Si's and, likewise, the total funness TF of the group is the sum of the Fi's. Bessie wants to maximize the sum of TS and TF, but she also wants both of these values to be non-negative (since she must also show that the cows are well-rounded; a negative TS or TF would ruin this). Help Bessie maximize the sum of TS and TF without letting either of these values become negative.
Input
* Lines 2..N+1: Two space-separated integers Si and Fi, respectively the smartness and funness for each cow.
Output
Sample Input
5
-5 7
8 -6
6 -3
2 1
-8 -5
Sample Output
8
Hint
Bessie chooses cows 1, 3, and 4, giving values of TS = -5+6+2 = 3 and TF
= 7-3+1 = 5, so 3+5 = 8. Note that adding cow 2 would improve the value
of TS+TF to 10, but the new value of TF would be negative, so it is not
allowed.
#include <iostream>
#include <cstring>
using namespace std;
const int INF=0x3f3f3f3f;
const int mid=1e5;
int dp[],s[],f[];
int main()
{
int n;
cin>>n;
for(int i=;i<=n;i++)
cin>>s[i]>>f[i];
fill(dp,dp+,-INF);
dp[mid]=;
for(int i=;i<=n;i++)
{
if(s[i]>)
{
for(int j=;j>=s[i];j--)
dp[j]=max(dp[j],dp[j-s[i]]+f[i]);
}
else
{
for(int j=;j-s[i]<;j++) ///j-s[i]>j因此递增
dp[j]=max(dp[j],dp[j-s[i]]+f[i]);
}
}
int ans=;
for(int i=mid;i<;i++)
if(dp[i]>=)
ans=max(ans,dp[i]+i-mid);
cout<<ans<<'\n';
return ;
}
Cow Exhibition (01背包)的更多相关文章
- [POJ 2184]--Cow Exhibition(0-1背包变形)
题目链接:http://poj.org/problem?id=2184 Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total S ...
- POJ-2184 Cow Exhibition(01背包变形)
Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10949 Accepted: 4344 Descr ...
- POJ 2184 Cow Exhibition (01背包变形)(或者搜索)
Cow Exhibition Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10342 Accepted: 4048 D ...
- POJ 2184 Cow Exhibition (01背包的变形)
本文转载,出处:http://www.cnblogs.com/Findxiaoxun/articles/3398075.html 很巧妙的01背包升级.看完题目以后很明显有背包的感觉,然后就往背包上靠 ...
- POJ 2184 Cow Exhibition 01背包
题意就是给出n对数 每对xi, yi 的值范围是-1000到1000 然后让你从中取若干对 使得sum(x[k]+y[k]) 最大并且非负 且 sum(x[k]) >= 0 sum(y[k] ...
- PKU 2184 Cow Exhibition 01背包
题意: 有一些牛,每头牛有一个Si值,一个Fi值,选出一些牛,使得max( sum(Si+Fi) ) 并且 sum(Si)>=0, sum(Fi)>=0 思路: 随便选一维做容量(比如Fi ...
- poj 2184 Cow Exhibition(背包变形)
这道题目和抢银行那个题目有点儿像,同样涉及到包和物品的转换. 我们将奶牛的两种属性中的一种当作价值,另一种当作花费.把总的价值当作包.然后对于每一头奶牛进行一次01背包的筛选操作就行了. 需要特别注意 ...
- Cow Exhibition 变种背包
Cow Exhibition Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Subm ...
- Cow Exhibition (背包中的负数问题)
个人心得:背包,动态规划真的是有点模糊不清,太过于抽象,为什么有些是从后面递推, 有些状态就是从前面往后面,真叫人头大. 这一题因为涉及到负数,所以网上大神们就把开始位置从10000开始,这样子就转变 ...
- POJ 2184 Cow Exhibition(背包)
希望Total Smart和Totol Funess都尽量大,两者之间的关系是鱼和熊掌.这种矛盾和背包的容量和价值相似. dp[第i只牛][j = 当前TotS] = 最大的TotF. dp[i][j ...
随机推荐
- Appium + Python自动化 - 元素定位uiautomatorviewer
元素定位主要介绍如何使用uiautiomatorviewer,通过定位到页面上的元素,然后进行相应的点击等操作.uiautiomatorviewer是android-sdk自带的一个元素定位工具,非常 ...
- 155 Min Stack 最小栈
设计一个支持 push,pop,top 操作,并能在常量时间内检索最小元素的栈. push(x) -- 将元素x推入栈中. pop() -- 删除栈顶的元素. top() -- 获取 ...
- 17984 FFF团的怒火
17984 FFF团的怒火 该题有题解 时间限制:1000MS 内存限制:65535K提交次数:55 通过次数:3 收入:3 题型: 编程题 语言: G++;GCC;VC;JAVA Descri ...
- HtmlUnit爬取Ajax动态生成的页面内容
HtmlUnit说白了就是一个浏览器,这个浏览器是用Java写的无界面的浏览器,正因为其没有界面,因此执行的速度还是可以滴. HtmlUnit提供了一系列的API,这些API可以干的功能比较多,如表单 ...
- go获取当前执行的位置程序
func getCurrentPath() string { _, filename, _, ok := runtime.Caller(1) var cwdPath string if ok { cw ...
- 【转】一个Java对象到底占多大内存?
最近在读<深入理解Java虚拟机>,对Java对象的内存布局有了进一步的认识,于是脑子里自然而然就有一个很普通的问题,就是一个Java对象到底占用多大内存? 在网上搜到了一篇博客讲的非常好 ...
- 让WPS10显示为offic97效果
让WPS10显示为offic97效果2019/1/26 22:02 OS:win7 64位使用的WPS_10.1.0.5603_setup.1460689247.exe 衣不如旧,人不如新.最开始接触 ...
- 里特定律 - Little's Law
里特定律(Little's Law)源自排队理论,是IT系统性能建模中最广为人知的定律. 里特定律揭示了前置时间(Lead Time).在制品数量(Work In Progress, WIP)和吞吐率 ...
- JS正则表达式匹配<div><style>标签
测试字符串: <style>v\:* { BEHAVIOR: url(#default#VML) } o\:* { BEHA ...
- [Github筆記] 清除所有 Commit 紀錄
# 把原來的 git 移除掉 sudo rm .git -r # 初始化 git init git remote add origin https://github.com/username/repo ...