R Programming week1-Data Type
Objects
R has five basic or “atomic” classes of objects:
character
numeric (real numbers)
integer
complex
logical (True/False)
The most basic object is a vector
A vector can only contain objects of the same class
BUT: The one exception is a list, which is represented as a vector but can contain objects of
different classes (indeed, that’s usually why we use them)
Empty vectors can be created with the vector() function.
Numbers
Numbers in R a generally treated as numeric objects (i.e. double precision real numbers)
If you explicitly want an integer, you need to specify the L suffix
Ex: Entering 1 gives you a numeric object; entering 1L explicitly gives you an integer.
There is also a special number Inf which represents infinity; e.g. 1 / 0; Inf can be used in
ordinary calculations; e.g. 1 / Inf is 0
The value NaN represents an undefined value (“not a number”); e.g. 0 / 0; NaN can also be
thought of as a missing value (more on that later)
Attributes
R objects can have attributes
names, dimnames
dimensions (e.g. matrices, arrays)
class
length
other user-defined attributes/metadata
Attributes of an object can be accessed using the attributes() function.
Creating Vectors
The c() function can be used to create vectors of objects.
Using the vector() function
> x <- vector("numeric", length = 10)
> x
[1] 0 0 0 0 0 0 0 0 0 0
Mixing Objects Mixing Objects
> y <- c(1.7, "a") ## character
> y <- c(TRUE, 2) ## numeric
> y <- c("a", TRUE) ## character
When different objects are mixed in a vector, coercion occurs so that every element in the vector is
of the same class.
Explicit Coercion
Objects can be explicitly coerced from one class to another using the as.* functions, if available.
> x <- 0:6
> class(x)
[1] "integer"
> as.numeric(x)
[1] 0 1 2 3 4 5 6
> as.logical(x)
[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE
> as.character(x)
[1] "0" "1" "2" "3" "4" "5" "6"
Nonsensical coercion results in NAs.
> x <- c("a", "b", "c")
> as.numeric(x)
[1] NA NA NA
Warning message:
NAs introduced by coercion
> as.logical(x)
[1] NA NA NA
> as.complex(x)
[1] 0+0i 1+0i 2+0i 3+0i 4+0i 5+0i 6+0i
Lists
Lists are a special type of vector that can contain elements of different classes. Lists are a very
important data type in R and you should get to know them well.
> x <- list(1, "a", TRUE, 1 + 4i)
> x
[[1]]
[1] 1
[[2]]
[1] "a"
[[3]]
[1] TRUE
[[4]]
[1] 1+4i
Matrices Matrices
Matrices are vectors with a dimension attribute. The dimension attribute is itself an integer vector of length 2 (nrow, ncol)
> m <- matrix(nrow = 2, ncol = 3)
> m
[,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
> dim(m)
[1] 2 3
> attributes(m)
$dim
[1] 2 3
Matrices (cont’d)
Matrices are constructed column-wise, so entries can be thought of starting in the “upper left” corner and running down the columns.
> m <- matrix(1:6, nrow = 2, ncol = 3)
> m
[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
Matrices can also be created directly from vectors by adding a dimension attribute.
> m <- 1:10
> m
[1] 1 2 3 4 5 6 7 8 9 10
> dim(m) <- c(2, 5)
> m
[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10
cbind-ing and rbind-ing cbind-ing and rbind-ing
Matrices can be created by column-binding or row-binding with cbind() and rbind().
> x <- 1:3
> y <- 10:12
> cbind(x, y)
x y
[1,] 1 10
[2,] 2 11
[3,] 3 12
> rbind(x, y)
[,1] [,2] [,3]
x 1 2 3
y 10 11 12
Factors
Factors are used to represent categorical data. Factors can be unordered or ordered. One can think
of a factor as an integer vector where each integer has a label.
Factors are treated specially by modelling functions like lm() and glm()
Using factors with labels is better than using integers because factors are self-describing; having
a variable that has values “Male” and “Female” is better than a variable that has values 1 and 2.
> x <- factor(c("yes", "yes", "no", "yes", "no"))
> x
[1] yes yes no yes no
Levels: no yes
> table(x)
x
no yes
2 3
> unclass(x)
[1] 2 2 1 2 1
attr(,"levels")
[1] "no" "yes"
The order of the levels can be set using the levels argument to factor(). This can be important
in linear modelling because the first level is used as the baseline level.
> x <- factor(c("yes", "yes", "no", "yes", "no"),
levels = c("yes", "no"))
> x
[1] yes yes no yes no
Levels: yes no
Missing Values Missing Values
Missing values are denoted by NA or NaN for undefined mathematical operations.
is.na() is used to test objects if they are NA
is.nan() is used to test for NaN
NA values have a class also, so there are integer NA, character NA, etc.
A NaN value is also NA but the converse is not true
> x <- c(1, 2, NA, 10, 3)
> is.na(x)
[1] FALSE FALSE TRUE FALSE FALSE
> is.nan(x)
[1] FALSE FALSE FALSE FALSE FALSE
> x <- c(1, 2, NaN, NA, 4)
> is.na(x)
[1] FALSE FALSE TRUE TRUE FALSE
> is.nan(x)
[1] FALSE FALSE TRUE FALSE FALSE
Data Frames
Data frames are used to store tabular data
They are represented as a special type of list where every element of the list has to have the
same length
Each element of the list can be thought of as a column and the length of each element of the list
is the number of rows
Unlike matrices, data frames can store different classes of objects in each column (just like lists);
matrices must have every element be the same class
Data frames also have a special attribute called row.names
Data frames are usually created by calling read.table() or read.csv()
Can be converted to a matrix by calling data.matrix()
> x <- data.frame(foo = 1:4, bar = c(T, T, F, F))
> x
foo bar
1 1 TRUE
2 2 TRUE
3 3 FALSE
4 4 FALSE
> nrow(x)
[1] 4
> ncol(x)
[1] 2
Names
R objects can also have names, which is very useful for writing readable code and self-describing
objects.
> x <- 1:3
> names(x)
NULL
> names(x) <- c("foo", "bar", "norf")
> x
foo bar norf
1 2 3
> names(x)
[1] "foo" "bar" "norf"
Summary
Data Types
atomic classes: numeric, logical, character, integer, complex \
vectors, lists
factors
missing values
data frames
names
R Programming week1-Data Type的更多相关文章
- R Programming week1-Reading Data
Reading Data There are a few principal functions reading data into R. read.table, read.csv, for read ...
- Coursera系列-R Programming第二周
博客总目录,记录学习R与数据分析的一切:http://www.cnblogs.com/weibaar/p/4507801.html --- 好久没发博客 且容我大吼一句 终于做完这周R Progra ...
- Coursera系列-R Programming第三周-词法作用域
完成R Programming第三周 这周作业有点绕,更多地是通过一个缓存逆矩阵的案例,向我们示范[词法作用域 Lexical Scopping]的功效.但是作业里给出的函数有点绕口,花费了我们蛮多心 ...
- salesforce 零基础开发入门学习(四)多表关联下的SOQL以及表字段Data type详解
建立好的数据表在数据库中查看有很多方式,本人目前采用以下两种方式查看数据表. 1.采用schema Builder查看表结构以及多表之间的关联关系,可以登录后点击setup在左侧搜索框输入schema ...
- include pointers as a primitive data type
Computer Science An Overview _J. Glenn Brookshear _11th Edition Many modern programming languages in ...
- 1月21日 Reference Data Type 数据类型,算法基础说明,二分搜索算法。(课程内容)
Reference Datat Types 引用参考数据类型 -> 组合数据类型 Array, Hash和程序员自定义的复合资料类型 组合数据的修改: 组合数据类型的变量,不是直接存值,而是存一 ...
- 【转载】salesforce 零基础开发入门学习(四)多表关联下的SOQL以及表字段Data type详解
salesforce 零基础开发入门学习(四)多表关联下的SOQL以及表字段Data type详解 建立好的数据表在数据库中查看有很多方式,本人目前采用以下两种方式查看数据表. 1.采用schem ...
- PHP 笔记一(systax/variables/echo/print/Data Type)
PHP stands for "Hypertext Preprocessor" ,it is a server scripting language. What Can PHP D ...
- JAVA 1.2(原生数据类型 Primitive Data Type)
1. Java的数据类型分为2类 >> 原生数据类型(primitive data type) >> 引用数据类型(reference data type) 3. 常量和变量 ...
随机推荐
- C++ 函数部分(2)
C++函数的递归调用 函数可以直接或间接地调用自身,称为递归调用.所谓直接调用自身,就是指在一个函数的函数体中出现了对自身的调用表达式,例如: void fun1(void) { //do somet ...
- 设置一个DIV块固定在屏幕中央(两种方法)
设置一个DIV块固定在屏幕中央(两种方法) 方法一: 对一个div进行以下设置即可实现居中. <style> #a{ position: fixed; top: 0px; left: 0p ...
- 暴走吧!Snapdragon SDK开发速成指南
(文/Aurora J) Qualcomm的Snapdragon处理器.它快如闪电.效率极高.擅长挑战多任务极限,而且拥有攻城狮们梦寐以求的无限潜能.它能确保您的手机集4G LTE.极速体验.长久续航 ...
- scikit-learn(1) 第一个例子说明
第一个 scikit-learn例子 ................................................................................. ...
- HDU4704:Sum(欧拉降幂公式)
Input 2 Output 2 Sample Input 2 由公式,ans=2^(N-1)%Mod=2^((N-1)%(Mod-1)+(Mod-1)) %Mod. 注意:降幂的之后再加一个Mod- ...
- java的内部类解析
内部类分为四种: 成员内部类.类方法与普通方法同级: 局部内部类.类方法内部,局部内部类有构造器,通过构造器把外部的变量传入局部内部类再使用是完全可以的 匿名内部类.匿名内部类是唯一没有构造器的类,和 ...
- zip压缩文件测试
http://tech.it168.com/a2009/0604/583/000000583382_5.shtml ]; MessageBox.Show(string.F ...
- 使用反射机制恢复xml文件表示的对象
完成如下功能:1)有一个(任意)对象,里面有N个properties以及getter和setter方法2)有一个properties文件,有N个key,value来描述对象中property的值3)有 ...
- WEB开发框架系列教程 (三)页面功能开发(2)
上一节介绍了,基础资料币别信息的开发,只通过辅助开发工具,创建及资料表,填写 表名,程序就完全好了. 最后也说到,可能我们也会面对另外一些基础资料信息的维护,但是不是简单到只有代码 和名称,可能还有另 ...
- 使用Jquery动态加入对象的集合属性,提交集合属性到表单
1.设置模型,引入构造函数,初始化集合 public class Person { public Person() //引入构造函数,初始化集合.如果未设置构造函数,集合会出现错误. { Skills ...