Objects

R has five basic or “atomic” classes of objects:

character

numeric (real numbers)

integer

complex

logical (True/False)

The most basic object is a vector

A vector can only contain objects of the same class

BUT: The one exception is a list, which is represented as a vector but can contain objects of

different classes (indeed, that’s usually why we use them)

Empty vectors can be created with the vector() function.

Numbers

Numbers in R a generally treated as numeric objects (i.e. double precision real numbers)

If you explicitly want an integer, you need to specify the L suffix

Ex: Entering 1 gives you a numeric object; entering 1L explicitly gives you an integer.

There is also a special number Inf which represents infinity; e.g. 1 / 0; Inf can be used in

ordinary calculations; e.g. 1 / Inf is 0

The value NaN represents an undefined value (“not a number”); e.g. 0 / 0; NaN can also be

thought of as a missing value (more on that later)

Attributes

R objects can have attributes

names, dimnames

dimensions (e.g. matrices, arrays)

class

length

other user-defined attributes/metadata

Attributes of an object can be accessed using the attributes() function.

Creating Vectors

The c() function can be used to create vectors of objects.

Using the vector() function

> x <- vector("numeric", length = 10)

> x

[1] 0 0 0 0 0 0 0 0 0 0

Mixing Objects Mixing Objects

> y <- c(1.7, "a") ## character

> y <- c(TRUE, 2) ## numeric

> y <- c("a", TRUE) ## character

When different objects are mixed in a vector, coercion occurs so that every element in the vector is

of the same class.

Explicit Coercion

Objects can be explicitly coerced from one class to another using the as.* functions, if available.

> x <- 0:6

> class(x)

[1] "integer"

> as.numeric(x)

[1] 0 1 2 3 4 5 6

> as.logical(x)

[1] FALSE TRUE TRUE TRUE TRUE TRUE TRUE

> as.character(x)

[1] "0" "1" "2" "3" "4" "5" "6"

Nonsensical coercion results in NAs.

> x <- c("a", "b", "c")

> as.numeric(x)

[1] NA NA NA

Warning message:

NAs introduced by coercion

> as.logical(x)

[1] NA NA NA

> as.complex(x)

[1] 0+0i 1+0i 2+0i 3+0i 4+0i 5+0i 6+0i

Lists

Lists are a special type of vector that can contain elements of different classes. Lists are a very

important data type in R and you should get to know them well.

> x <- list(1, "a", TRUE, 1 + 4i)

> x

[[1]]

[1] 1

[[2]]

[1] "a"

[[3]]

[1] TRUE

[[4]]

[1] 1+4i

Matrices Matrices

Matrices are vectors with a dimension attribute. The dimension attribute is itself an integer vector of length 2 (nrow, ncol)

> m <- matrix(nrow = 2, ncol = 3)

> m

[,1] [,2] [,3]

[1,] NA NA NA

[2,] NA NA NA

> dim(m)

[1] 2 3

> attributes(m)

$dim

[1] 2 3

Matrices (cont’d)

Matrices are constructed column-wise, so entries can be thought of starting in the “upper left” corner and running down the columns.

> m <- matrix(1:6, nrow = 2, ncol = 3)

> m

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Matrices can also be created directly from vectors by adding a dimension attribute.

> m <- 1:10

> m

[1] 1 2 3 4 5 6 7 8 9 10

> dim(m) <- c(2, 5)

> m

[,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

cbind-ing and rbind-ing cbind-ing and rbind-ing

Matrices can be created by column-binding or row-binding with cbind() and rbind().

> x <- 1:3

> y <- 10:12

> cbind(x, y)

x y

[1,] 1 10

[2,] 2 11

[3,] 3 12

> rbind(x, y)

[,1] [,2] [,3]

x 1 2 3

y 10 11 12

Factors

Factors are used to represent categorical data. Factors can be unordered or ordered. One can think

of a factor as an integer vector where each integer has a label.

Factors are treated specially by modelling functions like lm() and glm()

Using factors with labels is better than using integers because factors are self-describing; having

a variable that has values “Male” and “Female” is better than a variable that has values 1 and 2.

> x <- factor(c("yes", "yes", "no", "yes", "no"))

> x

[1] yes yes no yes no

Levels: no yes

> table(x)

x

no yes

2 3

> unclass(x)

[1] 2 2 1 2 1

attr(,"levels")

[1] "no" "yes"

The order of the levels can be set using the levels argument to factor(). This can be important

in linear modelling because the first level is used as the baseline level.

> x <- factor(c("yes", "yes", "no", "yes", "no"),

levels = c("yes", "no"))

> x

[1] yes yes no yes no

Levels: yes no

Missing Values Missing Values

Missing values are denoted by NA or NaN for undefined mathematical operations.

is.na() is used to test objects if they are NA

is.nan() is used to test for NaN

NA values have a class also, so there are integer NA, character NA, etc.

A NaN value is also NA but the converse is not true

> x <- c(1, 2, NA, 10, 3)

> is.na(x)

[1] FALSE FALSE TRUE FALSE FALSE

> is.nan(x)

[1] FALSE FALSE FALSE FALSE FALSE

> x <- c(1, 2, NaN, NA, 4)

> is.na(x)

[1] FALSE FALSE TRUE TRUE FALSE

> is.nan(x)

[1] FALSE FALSE TRUE FALSE FALSE

Data Frames

Data frames are used to store tabular data

They are represented as a special type of list where every element of the list has to have the

same length

Each element of the list can be thought of as a column and the length of each element of the list

is the number of rows

Unlike matrices, data frames can store different classes of objects in each column (just like lists);

matrices must have every element be the same class

Data frames also have a special attribute called row.names

Data frames are usually created by calling read.table() or read.csv()

Can be converted to a matrix by calling data.matrix()

> x <- data.frame(foo = 1:4, bar = c(T, T, F, F))

> x

foo bar

1 1 TRUE

2 2 TRUE

3 3 FALSE

4 4 FALSE

> nrow(x)

[1] 4

> ncol(x)

[1] 2

Names

R objects can also have names, which is very useful for writing readable code and self-describing

objects.

> x <- 1:3

> names(x)

NULL

> names(x) <- c("foo", "bar", "norf")

> x

foo bar norf

1 2 3

> names(x)

[1] "foo" "bar" "norf"

Summary

Data Types

atomic classes: numeric, logical, character, integer, complex \

vectors, lists

factors

missing values

data frames

names

R Programming week1-Data Type的更多相关文章

  1. R Programming week1-Reading Data

    Reading Data There are a few principal functions reading data into R. read.table, read.csv, for read ...

  2. Coursera系列-R Programming第二周

    博客总目录,记录学习R与数据分析的一切:http://www.cnblogs.com/weibaar/p/4507801.html  --- 好久没发博客 且容我大吼一句 终于做完这周R Progra ...

  3. Coursera系列-R Programming第三周-词法作用域

    完成R Programming第三周 这周作业有点绕,更多地是通过一个缓存逆矩阵的案例,向我们示范[词法作用域 Lexical Scopping]的功效.但是作业里给出的函数有点绕口,花费了我们蛮多心 ...

  4. salesforce 零基础开发入门学习(四)多表关联下的SOQL以及表字段Data type详解

    建立好的数据表在数据库中查看有很多方式,本人目前采用以下两种方式查看数据表. 1.采用schema Builder查看表结构以及多表之间的关联关系,可以登录后点击setup在左侧搜索框输入schema ...

  5. include pointers as a primitive data type

    Computer Science An Overview _J. Glenn Brookshear _11th Edition Many modern programming languages in ...

  6. 1月21日 Reference Data Type 数据类型,算法基础说明,二分搜索算法。(课程内容)

    Reference Datat Types 引用参考数据类型 -> 组合数据类型 Array, Hash和程序员自定义的复合资料类型 组合数据的修改: 组合数据类型的变量,不是直接存值,而是存一 ...

  7. 【转载】salesforce 零基础开发入门学习(四)多表关联下的SOQL以及表字段Data type详解

    salesforce 零基础开发入门学习(四)多表关联下的SOQL以及表字段Data type详解   建立好的数据表在数据库中查看有很多方式,本人目前采用以下两种方式查看数据表. 1.采用schem ...

  8. PHP 笔记一(systax/variables/echo/print/Data Type)

    PHP stands for "Hypertext Preprocessor" ,it is a server scripting language. What Can PHP D ...

  9. JAVA 1.2(原生数据类型 Primitive Data Type)

    1. Java的数据类型分为2类 >> 原生数据类型(primitive data type) >> 引用数据类型(reference data type) 3. 常量和变量 ...

随机推荐

  1. Educational Codeforces Round 18 C. Divide by Three DP

    C. Divide by Three   A positive integer number n is written on a blackboard. It consists of not more ...

  2. Docker vs. Kubernetes vs. Apache Mesos: Why What You Think You Know is Probably Wrong

    Docker vs. Kubernetes vs. Apache Mesos: Why What You Think You Know is Probably Wrong - Mesosphere h ...

  3. I.MX6 各模块 clock 查询

    /********************************************************************* * I.MX6 各模块 clock 查询 * 说明: * ...

  4. linux块设备模型架构框架

    Linux块设备的原理远比字符设备要复杂得多,尽管在linux这一块的方法论有很多相似之处,但考虑到它是用中块结构,它常常要搭配内存页管理,页缓冲块缓冲来改善硬盘访问的速度,按照块硬件最大的性能要求进 ...

  5. 洛谷 P1541 乌龟棋 —— DP

    题目:https://www.luogu.org/problemnew/show/P1541 DP. 代码如下: #include<iostream> #include<cstdio ...

  6. softmax regression in c++

    #include <iostream>#include <vector>#include <cmath>#include <algorithm>#inc ...

  7. 461. Hamming Distance(汉明距离)

    The Hamming distance between two integers is the number of positions at which the corresponding bits ...

  8. LUR和缺页次数

    缺页:缺页中断就是要访问的页不在主存,需要操作系统将其调入主存后再进行访问. LRU(Least recently used)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问 ...

  9. unity3d中对像之间的相互作用的实现

    首先这里的对像是面向对像中的对像: 其实就是C#中对像间相互作用的实现: 一.一般面向对像中关联和依赖的方式: 如关联方式: class A{ B m_B; A(B b){ m_B = b; } ac ...

  10. phpStudy安装配置小记

    一.phpStudy简介 该程序包集成最新的Apache+PHP+MySQL+phpMyAdmin+ZendOptimizer,一次性安装,无须配置即可使用,是非常方便.好用的PHP调试环境·该程序不 ...