[ NOIP 1998 ] TG
\(\\\)
\(\#A\) 车站
火车从第\(1\)站开出,上车的人数为\(a\),然后到达第\(2\)站,在第\(2\)站有人上、下车,但上、下车的人数相同,因此在第\(2\)站开出时(即在到达第\(3\)站之前)车上的人数保持为\(a\)人。从第\(3\)站起(包括第\(3\)站)上、下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到第\(n-1\)站,都满足此规律。
共有\(N\)个车站,始发站上车的人数为\(a\),最后一站下车的人数是\(m\)(全部下车),问\(x\)站开出时车上的人数。
- \(a,n,x\in [1,20]\),\(m\in [1,2000]\)
- 令\(fib_i\)表示第\(i\)项斐波那契数的值(从第一项开始),推推式子发现:
- 第一站和第三站上车\(a\)人
- 第二站增加\(0\)人,设上车\(b\)人
- 第四站增加\(b\)人
- \(5\text~n-1\)站中,第\(i\)站人数增量为\(fib_{i-4}-fib_{i-3}\)
- 暴力累加到第\(n-1\)项,回代求出\(b\),在退回到第\(x\)次即可。
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 30
#define R register
using namespace std;
int a,n,m,x;
int ax=2,ay,ansx,ansy,fib[N]={0,1,1};
int main(){
scanf("%d%d%d%d",&a,&n,&m,&x);
if(x<=2){printf("%d\n",a);return 0;}
if(x==3){printf("%d\n",2*a);return 0;}
for(R int i=3;i<N;++i) fib[i]=fib[i-1]+fib[i-2];
for(R int i=4;i<n;++i){
ax+=fib[i-4]; ay+=fib[i-3];
if(i==x) ansx=ax,ansy=ay;
}
m-=ax*a; m/=ay;
printf("%d\n",ansx*a+ansy*m);
return 0;
}
\(\\\)
\(\#B\) 拼数
设有\(N\)个正整数,将它们联接成一排,组成一个最大的多位整数。
- \(N\in [0,20]\)
- 按字典序排序所有串即可,巧妙地实现方式可以通过字符串相加比较大小。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
string s[50];
bool cmp(string a,string b){
return a+b>b+a;
}
int main(){
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)cin>>s[i];
sort(s+1,s+n+1,cmp);
for(int i=1;i<=n;i++) cout<<s[i];
printf("\n");
return 0;
}
\(\\\)
\(\# C\) 进制位
给出了如下的一张\(N\times N\)的加法表,表中的字母代表数字。 例如:
+ L K V E
L L K V E
K K V E KL
V V E KL KK
E E KL KK KV
试求出每一个字母所代表数字及运算的进制。
- \(N\in [0,9]\)
- \(9!=362880\),并不会超时,所以直接通过搜索枚举每一个字母所代表数字,最后暴力验证即可。
- 如果该表合法,则进制位必然为\(N-1\)进制,因为进位必定会产生\(1\),而\(1\)必定会累加出其他的数。
- 验证时注意进位不能在十进制下进位,需要模拟\(N-1\)进制的进位过程。
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 30
#define R register
#define gc getchar
using namespace std;
char s[N][N][N];
bool vis[N],use[N];
int n,m,q[N],trs[N],len[N][N];
inline bool check(){
for(R int i=1;i<n;++i)
for(R int j=1;j<n;++j){
int x=0,y=0,z=0;
for(R int k=0;k<len[0][j];++k) x=x*10+trs[s[0][j][k]-'A'+1];
for(R int k=0;k<len[i][0];++k) y=y*10+trs[s[i][0][k]-'A'+1];
while(x||y){
z=z*10+(x%10+y%10)%(n-1);
z+=((x%10+y%10)>=n-1)?10:0;
x/=10; y/=10;
}
x=z; z=0;
for(R int k=0;k<len[i][j];++k) z=z*10+trs[s[i][j][k]-'A'+1];
if(x!=z) return 0;
}
return 1;
}
inline bool dfs(int t){
if(t==q[0]+1){
if(check()){
for(R int i=1;i<n;++i)
printf("%c=%d ",s[0][i][0],trs[s[0][i][0]-'A'+1]);
printf("\n%d\n",n-1); return 1;
}
return 0;
}
for(R int i=0;i<n-1;++i)
if(!use[i]){
use[i]=1; trs[q[t]]=i;
if(dfs(t+1)) return 1;
use[i]=0; trs[q[t]]=0;
}
return 0;
}
int main(){
scanf("%d",&n);
for(R int i=0;i<n;++i)
for(R int j=0;j<n;++j){
scanf("%s",s[i][j]);
for(R int k=0;k<(int)strlen(s[i][j]);++k){
if(!isalpha(s[i][j][k])){len[i][j]=k;break;}
else vis[s[i][j][k]-'A'+1]=1;
}
if(!len[i][j]) len[i][j]=strlen(s[i][j]);
}
for(R int i=0;i<=27;++i) if(vis[i]) q[++q[0]]=i;
if(!dfs(1)) puts("ERROR!");
return 0;
}
[ NOIP 1998 ] TG的更多相关文章
- [NOIp 1998 提高组]Probelm 2 连接多位数【2011百度实习生笔试题】
/*====================================================================== [NOIp 1998 提高组]Probelm 2 连接 ...
- [ NOIP 2014 ] TG
\(\\\) \(Day\ 1\) \(\\\) \(\#\ A\) \(Rps\) 定义五种方案的石头剪刀布游戏,两人共进行\(N\)局游戏,已知两人各自的循环节和具体方案,胜者得\(1\)分,败者 ...
- noip 1998 洛谷P1013 进制位
题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: L K V E L L K V E K K V E KL V V E KL KK E E K ...
- [ NOIP 2008 ] TG
\(\\\) \(\#A\) \(Word\) 给出一个长为\(N\)的小写字母串,判断出现所有字母中最多出现次数减最少出现次数得到的答案是否是质数. \(N\in [1,100]\) 直接按题意开桶 ...
- [ NOIP 2002 ] TG
\(\\\) \(\#A\) 均分纸牌 有\(N\)堆纸牌,每堆有若干张,但纸牌总数必为\(N\)的倍数.可以在任一堆上取若干张纸牌,然后移动给其左右任意一侧的纸牌堆,求将所有的牌堆牌数都变为平均值最 ...
- [ NOIP 2009 ] TG
\(\\\) \(\#A\) \(Spy\) 给出两个长度均为\(N\)相同的样例串,建立第一个串各个字符向第二个串对应位置字符的映射,并用映射转换给出的长度为\(M\)第三个串,输入保证只有大写字符 ...
- vijos 1772 巧妙填数
描述 将1,2,\cdots,91,2,⋯,9共99个数分成三组,分别组成三个三位数,且使这三个三位数构成1:2:31:2:3的比例. 试求出所有满足条件的三个三位数.例如:三个三位数192,384, ...
- 洛谷P1010 幂次方
题目描述 任何一个正整数都可以用2的幂次方表示.例如 137=2^7+2^3+2^0 同时约定方次用括号来表示,即a^b 可表示为a(b). 由此可知,137137可表示为: 2(7)+2(3)+2( ...
- 洛谷——V1772 巧妙填数
描述 将1,2,\cdots,91,2,⋯,9共99个数分成三组,分别组成三个三位数,且使这三个三位数构成1:2:31:2:3的比例. 试求出所有满足条件的三个三位数.例如:三个三位数192,384, ...
随机推荐
- Java8-如何将List转变为逗号分隔的字符串--https://blog.csdn.net/benjaminlee1/article/details/72860845
Java8-如何将List转变为逗号分隔的字符串 https://blog.csdn.net/benjaminlee1/article/details/72860845
- Android GIS开发系列-- 入门季(2) MapView与图层介绍
一.MapView MapView是Arcgis中的最基本的类,与高德地图SDK的MapView的重要性一样.MapView的创建有两种方法,一种是在Layout文件中直接写控件.一种是实例化,Map ...
- eclipse编译项目用maven编译问题
1.eclipse只是个ide开发环境,并没有编译器功能.没有编译器.eclipse编译项目只是调jdk本地的java编译器.maven是单独编译,eclipse可以调用maven编译, 在eclip ...
- NetCore实现全局异常捕捉统一处理
做net项目时候,在Global.asax文件中可以通过Application_Error方法全局捕获异常并处理后统一跳转到自定义的错误页面. 下面是我个人在NetCore项目中实现全局捕获异常并统一 ...
- 1.4-动态路由协议OSPF⑧
OSPF认证(保证寻路协议级别的网络安全) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 按照参与认证的成员,进行分类: 1:链路认证(参与认证的成员 ...
- SuperSwipeRefreshLayout 一个功能强大的自己定义下拉刷新组件
SuperSwipeRefreshLayout 一个功能强大的自己定义下拉刷新组件. Why? 下拉刷新这样的控件.想必大家用的太多了,比方使用非常多的XListView等. 近期.项目中非常多列表都 ...
- Python3基础(四) 条件与循环控制
Python的流程控制语句包括:if条件语句.while循环语句.for循环语句.range函数以及break.continue.pass控制语句.这些语句在Python中的语义和在其他语言中基本是一 ...
- Java泛型解析(01):认识泛型
Java泛型解析(01):认识泛型 What Java从1.0版本号到如今的8.中间Java5中发生了一个非常重要的变化,那就是泛型机制的引入.Java5引入了泛型,主要还是为了满足在199 ...
- POJ 2367:Genealogical tree(拓扑排序)
Genealogical tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2738 Accepted: 1838 Spe ...
- 从新浪微博和MySQL的password保护机制谈HTTPS/SSL的必要性
尽管业界已经达成共识,在传输用户password等须要保密的信息时,尽可能採用HTTPS/SSL协议传输. 但我们还是能够看到少数没实用HTTPS/SSL加密的站点或应用. 新浪微博的登录页面和MyS ...