其实不用拆点,对于每个人我们假装他是\( s[i]+1 \)个点,可以由他向T点分别连\( s[i]+1 \)条边,容量为\( t[i][j]-t[i][j-1]\),由S点向所有产品i连容量为c[i]的边,由所有产品向能制造它的人连容量为inf的边。

因为是最小费用最大流,\( w[i][j]<w[i][j+1] \),所以会自动选择起点小的区间先流。

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const long long N=505,P=100005,inf=1e18;
long long m,n,c[N],a[N][N],s[N],t[N][10],w[N][10],S,T=1005,ans,fr[P],dis[P],h[P],cnt=1;
bool vis[P];
struct qwe
{
long long ne,no,to,va,c;
}e[P<<1];
long long read()
{
long long r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(long long u,long long v,long long w,long long c)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
e[cnt].c=c;
h[u]=cnt;
}
void ins(long long u,long long v,long long w,long long c)
{
add(u,v,w,c);
add(v,u,0,-c);
}
bool spfa()
{
queue<long long>q;
for(int i=S;i<=T;i++)
dis[i]=inf;
vis[S]=1;
dis[S]=0;
q.push(S);
while(!q.empty())
{
long long u=q.front();
q.pop();
vis[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&dis[e[i].to]>dis[u]+e[i].c)
{
fr[e[i].to]=i;
dis[e[i].to]=dis[u]+e[i].c;
if(!vis[e[i].to])
{
vis[e[i].to]=1;
q.push(e[i].to);
}
}
}
return dis[T]!=inf;
}
void mcf()
{
long long x=inf;
for(int i=fr[T];i;i=fr[e[i].no])
x=min(x,e[i].va);
for(int i=fr[T];i;i=fr[e[i].no])
{
ans+=x*e[i].c;
e[i].va-=x;
e[i^1].va+=x;
}
}
int main()
{
m=read(),n=read();
for(int i=1;i<=n;i++)
{
c[i]=read();
ins(S,i,c[i],0);
}
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
{
a[i][j]=read();
if(a[i][j])
ins(j,i+n,inf,0);
}
for(int i=1;i<=m;i++)
{
s[i]=read();
for(int j=1;j<=s[i];j++)
t[i][j]=read();
t[i][s[i]+1]=inf;
for(int j=1;j<=s[i]+1;j++)
{
w[i][j]=read();
ins(i+n,T,t[i][j]-t[i][j-1],w[i][j]);
}
}
while(spfa())
mcf();
printf("%lld",ans);
return 0;
}
/*
2 3
2 2 2
1 1 0
0 0 1
1
2
1 10
1
2
1 6
*/

bzoj 2245 [SDOI2011]工作安排【最小费用最大流】的更多相关文章

  1. bzoj 2245 [SDOI2011]工作安排(最小费用最大流)

    2245: [SDOI2011]工作安排 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1197  Solved: 580[Submit][Statu ...

  2. BZOJ 2245: [SDOI2011]工作安排( 费用流 )

    费用流模板题..限制一下不同愤怒值的工作数就可以了. ------------------------------------------------------------------------- ...

  3. bzoj 2245: [SDOI2011]工作安排

    #include<cstdio> #include<iostream> #include<cstring> #define M 10000 #define inf ...

  4. 【BZOJ2245】[SDOI2011]工作安排(费用流)

    [BZOJ2245][SDOI2011]工作安排(费用流) 题面 BZOJ 洛谷 题解 裸的费用流吧. 不需要拆点,只需要连边就好了,保证了\(W_j<W_{j+1}\). #include&l ...

  5. 【BZOJ2245】[SDOI2011]工作安排 拆边费用流

    [BZOJ2245][SDOI2011]工作安排 Description 你的公司接到了一批订单.订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件.公司共有m名员工,员工被 ...

  6. [bzoj2245][SDOI2011]工作安排(费用流)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2245 分析: 要注意到题目下面说的w是单增的 明显的费用流: 弄个源点S,汇点T S连 ...

  7. BZOJ 1061 志愿者招募(最小费用最大流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1061 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管.布 ...

  8. bzoj 1070 [SCOI2007]修车(最小费用最大流)

    1070: [SCOI2007]修车 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3515  Solved: 1411[Submit][Status] ...

  9. BZOJ 2668 [cqoi2012]交换棋子 | 最小费用最大流

    传送门 BZOJ 2668 题解 同时分别限制流入和流出次数,所以把一个点拆成三个:入点in(x).中间点mi(x).出点ou(x). 如果一个格子x在初始状态是黑点,则连(S, mi(x), 1, ...

随机推荐

  1. 通过rsync+inotify实现数据的实时备份 【转载】

       在前面的博文中,我讲到过利用rsync实现数据的镜像和备份,但是要实现数据的实时备份,单独靠rsync还不能实现,本文就讲述下如何实现数据的实时备份. 一.rsync的优点与不足  与传统的cp ...

  2. poj3694+hdu2460 求桥+缩点+LCA/tarjan

    这个题使我更深理解了TARJAN算法,题意:无向图,每添加一条边后文桥的数量,三种解法:(按时间顺序),1,暴力,每每求桥,听说这样能过,我没过,用的hash判重,这次有俩个参数(n->10w, ...

  3. Eclipse-Java代码规范和质量检查插件-Checkstyle

    CheckStyle是SourceForge下的一个项目,提供了一个帮助JAVA开发人员遵守某些编码规范的工具.它能够自动化代码规范检查过程,从而使得开发人员从这项重要但枯燥的任务中解脱出来.它可以根 ...

  4. Windows和linux双系统——改动默认启动顺序

    电脑上装了Windows 7和Ubantu双系统,因为Linux系统用的次数比較少而且还是默认的启动项对此非常不能容忍,因此得改动Windows为默认的启动项. 因为电脑上的系统引导程序是GRUB,因 ...

  5. Struts2之struts2标签库了解和使用

    一.学习案例:通过演示项目了解和使用struts2的标签库. 二.案例分析:演示项目是我当初跟着马士兵老师的视频学习时关于标签的项目,里面都有凝视,大家执行了解下. 在此我仅仅解说下经常使用的标签. ...

  6. [Android]自己定义带删除输入框

    在项目开发中,带删除button输入框也是人们经常常使用到的,该文章便介绍一下怎样创建一个带删除输入框.当中,须要解决的问题例如以下: a)创建自己定义editText类 b)在自己定义editTex ...

  7. Windows server 2003 + IIS6 搭建Asp.net MVC执行环境

    安装.Net Framework4.0. 下载地址: http://www.microsoft.com/zh-cn/download/details.aspx?id=17718  安装WindowsS ...

  8. 【JAVA】java中Future、FutureTask的使用

    如今的系统基本都是分布式的,各个系统各司其职的,不可能一个系统干了全部系统的事. 所以系统之间的交互就越来越多了.那么系统之间的交互仅仅有通过网络来交互了,而网络必定会存在延时的情况. 比方A系统的一 ...

  9. mysql最新版中文参考手册在线浏览

    MySQL是最流行的开放源码SQL数据库管理系统,具有快速.可靠和易于使用的特点.同时MySQL也是一种关联数据库管理系统,具有很高的响应速度和灵活性.又因为mysql拥有良好的连通性.速度和安全性, ...

  10. 嵌入式开发之davinci--- DVRRDK, EZSDK和DVSDK这三者有什么区别

    下载的时候选择信息要避免security类型的产品,这个是要审查的. DVRRDK是专门针对DVR的开发包是非公开的,针对安防的客户定制的,效率要高. EZSDK是开放的版本架构上使用openmax可 ...