bzoj 2245 [SDOI2011]工作安排【最小费用最大流】
其实不用拆点,对于每个人我们假装他是\( s[i]+1 \)个点,可以由他向T点分别连\( s[i]+1 \)条边,容量为\( t[i][j]-t[i][j-1]\),由S点向所有产品i连容量为c[i]的边,由所有产品向能制造它的人连容量为inf的边。
因为是最小费用最大流,\( w[i][j]<w[i][j+1] \),所以会自动选择起点小的区间先流。
#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const long long N=505,P=100005,inf=1e18;
long long m,n,c[N],a[N][N],s[N],t[N][10],w[N][10],S,T=1005,ans,fr[P],dis[P],h[P],cnt=1;
bool vis[P];
struct qwe
{
long long ne,no,to,va,c;
}e[P<<1];
long long read()
{
long long r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(long long u,long long v,long long w,long long c)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
e[cnt].c=c;
h[u]=cnt;
}
void ins(long long u,long long v,long long w,long long c)
{
add(u,v,w,c);
add(v,u,0,-c);
}
bool spfa()
{
queue<long long>q;
for(int i=S;i<=T;i++)
dis[i]=inf;
vis[S]=1;
dis[S]=0;
q.push(S);
while(!q.empty())
{
long long u=q.front();
q.pop();
vis[u]=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&dis[e[i].to]>dis[u]+e[i].c)
{
fr[e[i].to]=i;
dis[e[i].to]=dis[u]+e[i].c;
if(!vis[e[i].to])
{
vis[e[i].to]=1;
q.push(e[i].to);
}
}
}
return dis[T]!=inf;
}
void mcf()
{
long long x=inf;
for(int i=fr[T];i;i=fr[e[i].no])
x=min(x,e[i].va);
for(int i=fr[T];i;i=fr[e[i].no])
{
ans+=x*e[i].c;
e[i].va-=x;
e[i^1].va+=x;
}
}
int main()
{
m=read(),n=read();
for(int i=1;i<=n;i++)
{
c[i]=read();
ins(S,i,c[i],0);
}
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++)
{
a[i][j]=read();
if(a[i][j])
ins(j,i+n,inf,0);
}
for(int i=1;i<=m;i++)
{
s[i]=read();
for(int j=1;j<=s[i];j++)
t[i][j]=read();
t[i][s[i]+1]=inf;
for(int j=1;j<=s[i]+1;j++)
{
w[i][j]=read();
ins(i+n,T,t[i][j]-t[i][j-1],w[i][j]);
}
}
while(spfa())
mcf();
printf("%lld",ans);
return 0;
}
/*
2 3
2 2 2
1 1 0
0 0 1
1
2
1 10
1
2
1 6
*/
bzoj 2245 [SDOI2011]工作安排【最小费用最大流】的更多相关文章
- bzoj 2245 [SDOI2011]工作安排(最小费用最大流)
2245: [SDOI2011]工作安排 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1197 Solved: 580[Submit][Statu ...
- BZOJ 2245: [SDOI2011]工作安排( 费用流 )
费用流模板题..限制一下不同愤怒值的工作数就可以了. ------------------------------------------------------------------------- ...
- bzoj 2245: [SDOI2011]工作安排
#include<cstdio> #include<iostream> #include<cstring> #define M 10000 #define inf ...
- 【BZOJ2245】[SDOI2011]工作安排(费用流)
[BZOJ2245][SDOI2011]工作安排(费用流) 题面 BZOJ 洛谷 题解 裸的费用流吧. 不需要拆点,只需要连边就好了,保证了\(W_j<W_{j+1}\). #include&l ...
- 【BZOJ2245】[SDOI2011]工作安排 拆边费用流
[BZOJ2245][SDOI2011]工作安排 Description 你的公司接到了一批订单.订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件.公司共有m名员工,员工被 ...
- [bzoj2245][SDOI2011]工作安排(费用流)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2245 分析: 要注意到题目下面说的w是单增的 明显的费用流: 弄个源点S,汇点T S连 ...
- BZOJ 1061 志愿者招募(最小费用最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1061 题意:申奥成功后,布布经过不懈努力,终于 成为奥组委下属公司人力资源部门的主管.布 ...
- bzoj 1070 [SCOI2007]修车(最小费用最大流)
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 3515 Solved: 1411[Submit][Status] ...
- BZOJ 2668 [cqoi2012]交换棋子 | 最小费用最大流
传送门 BZOJ 2668 题解 同时分别限制流入和流出次数,所以把一个点拆成三个:入点in(x).中间点mi(x).出点ou(x). 如果一个格子x在初始状态是黑点,则连(S, mi(x), 1, ...
随机推荐
- poj2243+poj1915骑士问题
2243是骑士问题,八个格子的,BFS,因为要最短路经,所以没有用A*,A*跑不出来,太慢了,因为要搜索到所有解啊!一直更新最优,而BFS,一层一层搜索,第一次得到的便是最短的了!300格子,标记的话 ...
- delphi操作xml学习笔记 之一 入门必读
Delphi 对XML的支持---TXMLDocument类 Delphi7 支持对XML文档的操作,可以通过TXMLDocument类来实现对XML文档的读写.可以利用TXMLDocum ...
- Hive安装中遇到过的坑
实现说明每一个用户的环境都有细微的不一致,所以这里只是个人经过这些坑的处理,但是不意味着所有处理都是这样的操作,仅作为参考. 第一个坑 数据库安装,数据库最好装在Linux上,一直出了很多错,这里有一 ...
- [转] OracleDataReader.Read()是否有值
TongYu2009的原文地址 当你执行一次OracleDataReader.Read()是Bool型),注意是只读取一个!如果你的Select语句执行结果是空,或者所有的结果都已经读取完了则Orac ...
- Python中文GBK编码解决实例
http://eatsalt.blog.163.com/blog/static/879402662009420508748/ #coding:gbk l=['我'.decode('gbk'),'我'. ...
- 问题解决:FFmpeg视频编解码库,无法解析的外部信号
在编译FFmpeg相关项目时.可能会出现: error LNK2019: 无法解析的外部符号 "int __cdecl avpicture_fill(struct AVPicture *,u ...
- Exchanger使用
Exchanger使用
- VMware虚拟机上安装linux和克隆
虚拟机上安装好一台linux 系统后.为了高速搭建hadoop集群.须要再安装几个linux系统,比較笨的办法能够又一次用ios 镜像文件进行安装.可是又一次安装须要又一次配置一些信息并且安装时间比較 ...
- bufferevent 与 socket
http://blog.sina.com.cn/s/blog_56dee71a0100qx4s.html 很多时候,除了响应事件之外,应用还希望做一定的数据缓冲.比如说,写入数据的时候,通常的运行模式 ...
- 程序运行中(BSS段、数据段、代码段、堆栈)
程序运行中(BSS段.数据段.代码段.堆栈) BSS段:(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域.BSS是英文Block Started by Symbol的简 ...