[题目链接]

https://www.lydsy.com/JudgeOnline/problem.php?id=1101

[算法]

首先 , 问题可以转化为求GCD(x,y) = 1,x <= a / d , y <= b / d,的二元组个数

令F(a,b,d)表示x <= a , y <= b , d | GCD(x,y)的二元组个数 , 显然 , 只需保证x和y都为d的倍数即可 , 因此 , F(a,b,d) = [a / d][b / d](其中,"[]"表示向下取整)

那么 , 要求互质的二元组个数 , 可以通过容斥原理进行计算 :

在没有限制的情况下 , 共有a * b对二元组 , 需要将答案减去公约数是2 , 3 , 5 , 7等素数的倍数的二元组 , 但这样会多减了如公约数为2且3的倍数的二元组 , 需要加上它。

不难发现 , Answer = sigma( miu(i) * F(a,b,i) )(1 <= i <= min(a,b) , miu为莫比乌斯函数)

可以通过数论分块快速计算 , 时间复杂度 : O(T * (sqrt(A) + sqrt(B)) ( 其中,sqrt表示开根号)

#include<bits/stdc++.h>
using namespace std;
#define MAXN 50010 int T,a,b,d;
int miu[MAXN],sum[MAXN]; inline void sieve()
{
static bool visited[MAXN];
for (int i = ; i < MAXN; i++)
{
visited[i] = false;
miu[i] = ;
}
for (int i = ; i < MAXN; i++)
{
if (visited[i]) continue;
miu[i] = -;
for (int j = * i; j < MAXN; j += i)
{
visited[j] = true;
if ((j / i) % i == ) miu[j] = ;
else miu[j] *= -;
}
}
for (int i = ; i < MAXN; i++) sum[i] = sum[i - ] + miu[i];
}
inline int getsum(int l,int r)
{
return sum[r] - sum[l - ];
}
inline int solve(int x,int y)
{
int gi;
int ret = ;
for (int i = ; i <= min(x,y); i = gi + )
{
gi = min((x / (x / i)),(y / (y / i)));
ret += (x / i) * (y / i) * getsum(i,gi);
}
return ret;
} int main()
{ scanf("%d",&T);
sieve();
while (T--)
{
scanf("%d%d%d",&a,&b,&d);
printf("%d\n",solve(a / d,b / d));
} return ; }

[POI 2007] Zap的更多相关文章

  1. BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)

    手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...

  2. [POI 2007]ZAP-Queries

    Description Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency) ...

  3. 解题:POI 2007 Tourist Attractions

    题面 事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸) 先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态 ...

  4. 解题:POI 2007 Driving Exam

    题面 有点意思的题 从一个位置$i$出发可以到达每一个位置即是从$1,n$出发可以到达$i$.然后有了一个做法:把图上下反转后建反图,这样就可以求从一个点$i$到达左右两侧的花费$dp[i][0/1] ...

  5. 解题:POI 2007 Weights

    题面 这是个$O(nlog^2$ $n)$的解法,因为蒟蒻博主没有看懂$O(nlog$ $n)$的更优秀的解法 显然从小到大装砝码是最优的方法,又显然从大到小装容器不会使得答案变劣,还显然砝码数具有单 ...

  6. [POI 2007] 办公楼

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1098 [算法] 显然 , 答案为补图的连通分量个数 用链表优化BFS , 时间复杂度 ...

  7. [POI 2007] 堆积木

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1109 [算法] DP [代码] #include<bits/stdc++.h& ...

  8. 【POI 2007】 山峰和山谷

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1102 [算法] 广度优先搜索 [代码] #include<bits/stdc+ ...

  9. [POI 2007] 旅游景点

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1097 [算法] 首先,用Dijkstra算法求出2-k+1到每个点的最短路 然后,我 ...

随机推荐

  1. 用 Systemtap 统计 TCP 连接

    转自: https://mp.weixin.qq.com/s?__biz=MzIxMjAzMDA1MQ==&mid=2648946009&idx=1&sn=3a0be2fe4f ...

  2. npm 使用教程

    链接----------------------------------npm官网npm淘宝镜像 安装包----------------------------------npm install -g ...

  3. python 配置文件 ConfigParser模块

    ConfigParser模块 用于生成和修改常见配置文档,当前模块的名称在 python 3.x 版本中变更为 configparser. 来看一个好多软件的常见文档格式如下 [DEFAULT] Se ...

  4. java---括号匹配

    import java.util.HashMap;import java.util.LinkedList;import java.util.Map; /* *括号匹配 * 1.用栈实现,如果读取字符为 ...

  5. 这可能是vue-cli最全的解析了……

    题言: 相信很多vue新手,都像我一样,只是知道可以用vue-cli直接生成一个vue项目的架构,并不明白,他究竟是怎么运行的,现在我们一起来研究一下... 一.安装vue-cli,相信你既然会用到v ...

  6. Python - 对多继承以及super的一些了解

    Python支持多继承,与C++一样都会出现一种问题:子类继承的多个父类又继承了同一个父类,这时就有可能会出现父类构造方法被调用多次的情况.关于这个问题,我找了一些资料,虽然没有亲自全部验证,这里我总 ...

  7. codevs1197 Vigenère密码

    题目描述 Description 16 世纪法国外交家Blaise de Vigenère设计了一种多表密码加密算法——Vigenère密码.Vigenère 密码的加密解密算法简单易用,且破译难度比 ...

  8. [bzoj1582][Usaco2009 Hol]Holiday Painting 节日画画_线段树

    Holiday Painting 节日画画 bzoj-1582 Usaco-2009 Hol 题目大意:给定两个n*m的01网格图.q次操作,每次将第二个网格图的子矩阵全部变成0或1,问每一次操作后两 ...

  9. [bzoj 1025][SCOI2009]游戏(DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 分析:首先这个问题等价于A1+A2+……Ak=n,求lcm(A1,A2,……,Ak)的种 ...

  10. 安装elasticsearch遇到的签名和目标被配置多次的问题

    命中:6 http://ppa.launchpad.net/ondrej/php/ubuntu bionic InRelease获取:7 http://packages.elastic.co/elas ...