[题目链接]

https://www.lydsy.com/JudgeOnline/problem.php?id=1101

[算法]

首先 , 问题可以转化为求GCD(x,y) = 1,x <= a / d , y <= b / d,的二元组个数

令F(a,b,d)表示x <= a , y <= b , d | GCD(x,y)的二元组个数 , 显然 , 只需保证x和y都为d的倍数即可 , 因此 , F(a,b,d) = [a / d][b / d](其中,"[]"表示向下取整)

那么 , 要求互质的二元组个数 , 可以通过容斥原理进行计算 :

在没有限制的情况下 , 共有a * b对二元组 , 需要将答案减去公约数是2 , 3 , 5 , 7等素数的倍数的二元组 , 但这样会多减了如公约数为2且3的倍数的二元组 , 需要加上它。

不难发现 , Answer = sigma( miu(i) * F(a,b,i) )(1 <= i <= min(a,b) , miu为莫比乌斯函数)

可以通过数论分块快速计算 , 时间复杂度 : O(T * (sqrt(A) + sqrt(B)) ( 其中,sqrt表示开根号)

#include<bits/stdc++.h>
using namespace std;
#define MAXN 50010 int T,a,b,d;
int miu[MAXN],sum[MAXN]; inline void sieve()
{
static bool visited[MAXN];
for (int i = ; i < MAXN; i++)
{
visited[i] = false;
miu[i] = ;
}
for (int i = ; i < MAXN; i++)
{
if (visited[i]) continue;
miu[i] = -;
for (int j = * i; j < MAXN; j += i)
{
visited[j] = true;
if ((j / i) % i == ) miu[j] = ;
else miu[j] *= -;
}
}
for (int i = ; i < MAXN; i++) sum[i] = sum[i - ] + miu[i];
}
inline int getsum(int l,int r)
{
return sum[r] - sum[l - ];
}
inline int solve(int x,int y)
{
int gi;
int ret = ;
for (int i = ; i <= min(x,y); i = gi + )
{
gi = min((x / (x / i)),(y / (y / i)));
ret += (x / i) * (y / i) * getsum(i,gi);
}
return ret;
} int main()
{ scanf("%d",&T);
sieve();
while (T--)
{
scanf("%d%d%d",&a,&b,&d);
printf("%d\n",solve(a / d,b / d));
} return ; }

[POI 2007] Zap的更多相关文章

  1. BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)

    手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...

  2. [POI 2007]ZAP-Queries

    Description Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency) ...

  3. 解题:POI 2007 Tourist Attractions

    题面 事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸) 先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态 ...

  4. 解题:POI 2007 Driving Exam

    题面 有点意思的题 从一个位置$i$出发可以到达每一个位置即是从$1,n$出发可以到达$i$.然后有了一个做法:把图上下反转后建反图,这样就可以求从一个点$i$到达左右两侧的花费$dp[i][0/1] ...

  5. 解题:POI 2007 Weights

    题面 这是个$O(nlog^2$ $n)$的解法,因为蒟蒻博主没有看懂$O(nlog$ $n)$的更优秀的解法 显然从小到大装砝码是最优的方法,又显然从大到小装容器不会使得答案变劣,还显然砝码数具有单 ...

  6. [POI 2007] 办公楼

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1098 [算法] 显然 , 答案为补图的连通分量个数 用链表优化BFS , 时间复杂度 ...

  7. [POI 2007] 堆积木

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1109 [算法] DP [代码] #include<bits/stdc++.h& ...

  8. 【POI 2007】 山峰和山谷

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1102 [算法] 广度优先搜索 [代码] #include<bits/stdc+ ...

  9. [POI 2007] 旅游景点

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1097 [算法] 首先,用Dijkstra算法求出2-k+1到每个点的最短路 然后,我 ...

随机推荐

  1. vue组件---组件注册

    (1)组件名 在注册一个组件的时候,我们始终需要给它一个名字.比如在全局注册的时候我们已经看到了: Vue.component('my-component-name', { /* ... */ }) ...

  2. Ceres

    sudo apt-get install liblapack-dev libsuitesparse-dev libcxspares3.1.2 libgflags-dev libggoogle-glog ...

  3. php切换版本之后 redis 安装使用

    一:redis安装Download, extract and compile Redis with: $ wget http://download.redis.io/releases/redis-3. ...

  4. mysql如何将一个字段多个类型串成一个字符串?

    结论 先说结论,可以使用group_concat group by的组合实现多行变一行,将一个字段的多个类型串成一个字段 需求: 如题,一个字段如电影类别,一部电影可以是多个类别,如喜剧.动作片等,其 ...

  5. putchar()和getchar()使用解析

    1.putchar() 作用:输出一个字符 格式:putchar(c),c为输出参数 #include <stdio.h> int main() { char a1='A',b1='B'; ...

  6. python环境配置以及基本知识

    python---一种解释型语言(脚本语言),具有代码简洁.入门简单.开发效率高的优点.当然不可避免的有着暴露源码.执行效率低的缺点,但毕竟瑕不掩瑜,在数据是无比宝贵的财富的当下,无疑是一门优秀的编成 ...

  7. python virtualenv 虚拟环境的应用

    为什么要使用python的虚拟环境呢?: 首先我们来说不实用虚拟环境的情况: 在Python应用程序开发的过程中,系统安装的Python3只有一个版本:3.7.所有第三方的包都会被pip3安装到   ...

  8. dp专题备忘录

    hdu 1024:基础dp题 hdu 1029:主元素问题,很快的解法,计数器 hdu 1069:LIS hdu 1074:数位dp,数位dp基础 hdu 1257:简单LIS,要仔细分析为什么是求最 ...

  9. [bzoj1500][NOI2005 维修数列] (splay区间操作)

    Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目. 第2行包含N个数字,描述初始时的数列. 以下M行,每 ...

  10. 常量Constant

    常量通常指的是一个固定的值,例如:1.2.3.’a’.’b’.true.false.”helloWorld”等. 在Java语言中,主要是利用关键字final来定义一个常量. 常量一旦被初始化后不能再 ...