Matlab学习笔记(五)
三、矩阵运算
(一)矩阵函数和特殊矩阵
- 常见的矩阵处理函数
- 表3-1 常见的矩阵函数
函数 | 说明 |
/或\ | 矩阵除法中的左除或右除,可以用于求解线性方程组 |
accumarray(ind,val) | 累加创建数组 |
A^n | 求解矩阵A的n次幂 |
balance(A) | 将矩阵A进行缩放以提高其特征值的精度 |
[V,D]=cdf2rdf(V,D) | 将复数对角矩阵转换为两个实数对角矩阵 |
chol(A) | 对矩阵A进行Cholesky因式分解 |
cholinc(A,DropTol) | 对矩阵A进行不完全的Cholesky因式分解,DropTol指定分解误差 |
cholinc(A,Options) | 对矩阵A进行不完全的Cholesky因式分解,Options为包含3个分量的结构体 |
cholupdate(R,X) | Cholesky因式分解的秩1升级 |
cond(A) | 利用奇异值分解求矩阵A的范数 |
condest(A) | 求矩阵A的范数1的条件数估计 |
[V,D,s]=condeig(A) | 求矩阵A与重特征值相对应的条件数 |
det(A) | 求矩阵的行列式 |
dmperm(A) | 求矩阵A进行Dulmage-Mendelsohn排列 |
eig(A) | 求矩阵A的特征值和特征向量 |
[V,D]=eig(A) | 求矩阵A的特征向量矩阵(V)和特征值对角矩阵(D) |
expm(A) | 矩阵指数函数 |
funm(A) | 矩阵通用函数 |
gsvd(A,B) | 求矩阵A的广义奇异值 |
[U,V,X,C,S]=gsvd(A) | 求矩阵A进行广义奇异值分解 |
hess(A) | 求矩阵A的Hessenburg标准型 |
inv(A) | 求矩阵A的逆 |
linsolve(A,y,options) | 快速求解方程组Ax=y,其中A的结构由options条件给定 |
logm(A) | 矩阵的对数运算 |
lscov(A,y,V) | 已知数据的协方差矩阵(V),求线性方程组的最小二乘解 |
lsqnonneg(A,y) | 求线性方程组的非负最小二乘解 |
[L,U,P]=lu(A) | 对矩阵A进行LU分解 |
minres(A,y) | 利用最小残差方法求线性方程组的解 |
norm(A,type) | 求矩阵或向量(由type指定)的范数 |
null(A) | 求A的零空间 |
orth(A) | 求A的正交空间 |
pinv(A) | 求A的伪逆矩阵 |
planerot(X) | 求X进行平面旋转 |
ploy(A) | 求A的特征多项式 |
polyeig(A0,A1,...) | 多项式的特征值解 |
polyvalm(A) | 求A的矩阵多项式 |
qr(A) | 对A进行正交三角分解 |
qrdelete(Q,R,J) | 从QR分解中删除行或列 |
qrinsert(Q,R,J,X) | 在QR分解中插入行或列 |
qz(A,B) | 广义特征值问题求解 |
rank(A) | 利用奇异值分解求A的秩 |
rcond(A) | 对A进行LAPACK倒数条件估计 |
rref(A) | 将矩阵A变换为行阶梯型 |
rsf2csf(A) | 将A由实块对角阵转换为复块对角阵 |
schur(A) | 对矩阵A进行Schur分解 |
sqrtm(A) | 求矩阵A的平方根 |
subspace(A,B) | 求两个子空间A和B之间的角度 |
svd(A) | 求矩阵A的奇异值 |
[U,S,V]=svd(A) | 对A进行奇异值分解 |
trace(A) | 求矩阵A的迹(即对角线元素之和) |
- 特殊矩阵
- 表3-2 特殊矩阵
矩阵 | 说明 |
[] | 空矩阵 |
blkdiag(a0,a1,...) | 以输入参数为对角元素生成对角矩阵 |
compan(P) | 求多项式的伴随矩阵 |
eye(r,c) | 产生r行,c列的单位矩阵 |
gallery | 生成一系列的测试矩阵(50个以上) |
hadamard(n) | 生成1个n阶的Hadamard矩阵 |
hankel(C) | 生成C的Hankel矩阵 |
hilb(n) | 生成n阶的Hilbert矩阵 |
invhilb(n) | 生成n阶的逆Hilbert矩阵 |
magic(n) | 生成n阶的魔幻矩阵 |
ones(r,c) | 生成r行、c列的全1矩阵 |
pascal(n) | 生成n阶的Pascal矩阵 |
rand(r,c) | 生成r行、c列的随机矩阵(元素值介于0和1之间) |
randn(r,c) | 生成r行、c列的零均值和单位方差的正态分布的随机矩阵 |
rosser | 典型的对称矩阵特征值问题测试 |
toeplitz(C,R) | 生成Toeplitz矩阵 |
vander(C) | 生成Vandermonde矩阵 |
wilkinson(n) | 生成n阶的Wilkinson特征值测试矩阵 |
zeros(r,c) | 生成r行、c列的全0矩阵 |
- 稀疏矩阵
- 稀疏矩阵中大部分元素都是0,只有少部分元素是非0的。
- 一般,MATLAB存储稀疏矩阵需要通过3个矩阵,对于一个m×n的矩阵(假设其中有nz个非0元素,存储在长度为nz_max的矩阵中)
- 第一个矩阵:存储所有非0元素,矩阵长度为nz_max
- 第二个矩阵:存储所有非0元素的行下标,矩阵长度也为nz_max
- 第三个矩阵:存储每一列开始处的指针和标志这3个矩阵结束的指针,存储长度为n+1
- 创建稀疏矩阵
- sparse(i,j,s,m,n,nz_max)使用[i,j,s]来创建m×n维稀疏矩阵s(s为所有非0元素构成的向量,ij为非0元素的行下标、列下标)
- spdiags(B,d,m,n)可以抽取、创建或替代对角稀疏矩阵(d表示长度为p的整数向量,B为满矩阵)
- 表3-3 稀疏矩阵函数
函数 | 说明 |
bicg | 求解双共轭梯度迭代线性方程的解 |
bicgstab | 求解双共轭梯度稳定迭代线性方程的解 |
cgs | 求解二次共轭梯度迭代线性方程曾的解 |
cholinc | 不完全Cholesky分解 |
colamd | 列估计最小度重排序方法 |
colamdtree | 带列消元树排序后的colamd方法 |
colmmd | 列最小度排序 |
colperm | 对列进行随机排序 |
condest | 1范数估计 |
dmperm | Dulmage-Nebdeksohn重排序方法 |
eigs | 使用APPACK的特征值 |
etree | 矩阵消元树结构 |
etreeplot | 绘制消元路径 |
find | 寻找非0元素索引 |
full | 将稀疏矩阵转化为完整矩阵 |
gmres | 求广义最小残差迭代线性方程的解 |
gplot | 绘制图论图形 |
issparse | 判断是否为稀疏矩阵 |
lsqr | 标准方程中共轭梯度的LSQR实现 |
luinc | 不完全LU因式分解 |
minres | 最小残差迭代线性方程求解 |
Nnz | 求矩阵中的非0元素个数 |
nonzeros | 提取矩阵中的非0元素 |
normest | 矩阵的2范数估计 |
nzmax | 求分配给非0元素的存储空间 |
pcg | 求预处理共轭梯度迭代线性方程组的解 |
qmr | 伪最小残差迭代线性方程组解法 |
randperm | 产生随机排列的数组 |
spalloc | 为稀疏矩阵分配内存空间 |
sparse | 创建稀疏矩阵 |
spaugment | 建立最小二乘增广矩阵 |
spconvert | 从外部格式中载入稀疏矩阵 |
sodiags | 利用对角元素生成稀疏矩阵 |
speye | 单位稀疏矩阵 |
spfun | 将一个函数应用于非0元素 |
spones | 将所有非0元素用1代替 |
spparms | 设置稀疏矩阵程序的参数 |
sprand | 创建均匀分布的随机稀疏矩阵 |
sprandn | 创建高斯分布的随机稀疏矩阵 |
sprandsym | 创建对称的随机稀疏矩阵 |
sprank | 求结构秩的值 |
spy | 稀疏矩阵的图形表示 |
svds | 产生一些奇异值 |
symbfact | 符合因式分解 |
symamd | 对称估计最小阶次重排序法 |
symamdtree | 带对称消元树排序后的symand |
symmd | 对称最小阶次重排序 |
symmlq | 对称LQ迭代线性方程的求解 |
symrcm | 对称的反向Cuthill-Mckee重排序 |
treelayout | 变换成树状结构 |
treeplot | 画出树状图 |
- 创建稀疏矩阵并画出稀疏矩阵的图(e_three_1.m)
(二)矩阵分析
- 范数分析
- 向量的范数
- 线性空间中的某个向量$\textbf{x}=\left \{ x_{1},x_{2},\cdots ,x_{n} \right \}$,其p范数定义为:$\left \| \mathbf{x} \right \|_{p}=\left ( \sum_{i=1}^{n}\left | x_{i}\right |^{p}\right )^{\frac{1}{p}}$
Matlab学习笔记(五)的更多相关文章
- C#可扩展编程之MEF学习笔记(五):MEF高级进阶
好久没有写博客了,今天抽空继续写MEF系列的文章.有园友提出这种系列的文章要做个目录,看起来方便,所以就抽空做了一个,放到每篇文章的最后. 前面四篇讲了MEF的基础知识,学完了前四篇,MEF中比较常用 ...
- Matlab学习笔记 figure函数
Matlab学习笔记 figure函数 matlab中的 figure 命令,能够创建一个用来显示图形输出的一个窗口对象.每一个这样的窗口都有一些属性,例如窗口的尺寸.位置,等等.下面一一介绍它们. ...
- matlab学习笔记 bsxfun函数
matlab学习笔记 bsxfun函数 最近总是遇到 bsxfun这个函数,前几次因为无关紧要只是大概看了一下函数体去对比结果,今天再一次遇见了这个函数,想想还是有必要掌握的,遂查了些资料总结如下. ...
- (转)Qt Model/View 学习笔记 (五)——View 类
Qt Model/View 学习笔记 (五) View 类 概念 在model/view架构中,view从model中获得数据项然后显示给用户.数据显示的方式不必与model提供的表示方式相同,可以与 ...
- matlab学习笔记(一)单元数组
matlab学习笔记(一)单元数组 1.floor(x) :取最小的整数 floor(3.18)=3,floor(3.98)=3 ceil(x) :取最大的整数 ceil(3.18)=4,ceil( ...
- java之jvm学习笔记五(实践写自己的类装载器)
java之jvm学习笔记五(实践写自己的类装载器) 课程源码:http://download.csdn.net/detail/yfqnihao/4866501 前面第三和第四节我们一直在强调一句话,类 ...
- Learning ROS for Robotics Programming Second Edition学习笔记(五) indigo computer vision
中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...
- Typescript 学习笔记五:类
中文网:https://www.tslang.cn/ 官网:http://www.typescriptlang.org/ 目录: Typescript 学习笔记一:介绍.安装.编译 Typescrip ...
- ES6学习笔记<五> Module的操作——import、export、as
import export 这两个家伙对应的就是es6自己的 module功能. 我们之前写的Javascript一直都没有模块化的体系,无法将一个庞大的js工程拆分成一个个功能相对独立但相互依赖的小 ...
- muduo网络库学习笔记(五) 链接器Connector与监听器Acceptor
目录 muduo网络库学习笔记(五) 链接器Connector与监听器Acceptor Connector 系统函数connect 处理非阻塞connect的步骤: Connetor时序图 Accep ...
随机推荐
- 【插件开发】—— 10 JFace开发详解
前文回顾: 1 插件学习篇 2 简单的建立插件工程以及模型文件分析 3 利用扩展点,开发透视图 4 SWT编程须知 5 SWT简单控件的使用与布局搭配 6 SWT复杂空间与布局搭配 7 SWT布局详解 ...
- NOIp2013 车站分级 【拓扑排序】By cellur925
题目传送门 我们注意到,题目中说:如果这趟车次停靠了火车站 x,则始发站.终点站之间所有级别大于等于火车站x的都必须停靠.有阶级关系,满满的拓扑排序氛围.但是,如果我们按大于等于的关系连,等于的情况就 ...
- Use Power bi Mobile Show SSRS 2016 Mobile Report;使用 Power BI Mobile 查阅ssrs2016 mobile report
使用 power bi mobile 查阅 ssrs 2016 mobile report 很简单,以下是IOS客户端的演示. 系统自带了演示数据,包含power bi 的和 ssrs mobile ...
- 关于Swing中JFrame等顶级容器的层次还有设置背景的方式
资料来自:http://blog.csdn.net/qq_32006373/article/details/49659129 http://yuncode.net/code/c_5196327caac ...
- 445 Add Two Numbers II 两数相加 II
给定两个非空链表来代表两个非负整数.数字最高位位于链表开始位置.它们的每个节点只存储单个数字.将这两数相加会返回一个新的链表.你可以假设除了数字 0 之外,这两个数字都不会以零开头.进阶:如果输入链表 ...
- JSP页面自动刷新
1.页面自动刷新:把如下代码加入<head>区域中<meta http-equiv="refresh" content="20">,其中 ...
- [转]Android项目快速开发框架探索(Mysql + OrmLite + Hessian + Sqlite)
前言 结合之前所用的ormlite和hessian,再加上SAE已经支持JAVA,把服务端切换到JAVA,也就有了本文.使用hessian来做数据传输,ormlite来实现客户端与服务端的数据存储,极 ...
- 从java toBinaryString() 看计算机数值存储方式(原码、反码、补码)
一.toBinaryString 方法及其含义 1.1 方法说明 该方法位于java.lang.Integer类中 方法签名:public static String toBinaryString(i ...
- R in action读书笔记(19)第十四章 主成分和因子分析
第十四章:主成分和因子分析 本章内容 主成分分析 探索性因子分析 其他潜变量模型 主成分分析(PCA)是一种数据降维技巧,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分.探索性因 ...
- (转)淘淘商城系列——SSM框架整合之表现层整合
http://blog.csdn.net/yerenyuan_pku/article/details/72721120 上文我们一起学习了Service层的整合,本文将教大家如何整合表现层. 我们在t ...