其实有原题,生成树计数

然鹅这题里面是两道题, 50pts 可以用上面那题的做法直接过掉,另外 50pts 要推推式子,搞出 O n 的做法才行(毕竟多项式常数之大您是知道的)

虽说这道题里面是没有 a_i 的,也不用分治合并多项式的就是了,所以大致思路看我另一题的题解就好了,这里对于前 50pts 的做法只给出式子:

\[ANS_n= {(n-2)! \Big( [x^{n-2}] \big(\sum_{i=0}^\infty (i+1) ^m {x^i \over i! } \big)^n \Big)\over n^{n-2}}
\]

我们先康康我们原本要求的多项式变成了什么:

\[[x^{n-2}] \big(\sum_{i=0}^\infty (i+1) {x^i\over i!} \big)^n
\]

然后我们就考虑转成 EXP 咯

\[\begin{aligned} &[x^{n-2}]\Big(\sum_{i=0}^\infty (i+1) {x^i\over i!} \Big)^n\\=& [x^{n-2}]\Big(e^x(x+1)\Big)^n \\=&[x^{n-2}] e^{nx}·(x+1)^n \\=& \sum_{i=2}^{n} {n^{i-2}\over (i-2)!} ·{n!\over (n-i)!· i!} \end{aligned}
\]

注意,这里乱转 EXP 的时候千万要记得运算,不然就像我一样多加了一个 -x 然后死都化不出来了

然后咱预处理完 阶乘 及其 逆元 就可以 O n 出解了

//by Judge
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
#define Rg register
#define fp(i,a,b) for(Rg int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(Rg int i=(a),I=(b)-1;i>I;--i)
#define ll long long
using namespace std;
const int mod=998244353;
const int iG=332748118;
const int M=5e6+3;
typedef int arr[M];
#ifndef Judge
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
#endif
char buf[1<<21],*p1=buf,*p2=buf;
inline int inc(int x,int y){return (x+=y)>=mod?x-mod:x;}
inline int dec(int x,int y){return (x-=y)<0?x+mod:x;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
inline int read(){ int x=0,f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0'; return x*f;
} int n,m,res,limit; arr fac,finv,A,B,C,r;
inline int qpow(Rg int x,Rg int p=mod-2,int s=1){
for(;p;p>>=1,x=mul(x,x)) if(p&1) s=mul(s,x); return s;
}
inline void init(int n){ int l=-1;
for(limit=1;limit<n;limit<<=1)++l;
fp(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
inline void NTT(int* a,int tp){
fp(i,0,limit-1) if(i<r[i]) swap(a[i],a[r[i]]);
for(Rg int mid=1;mid<limit;mid<<=1){
int Gn=qpow(tp?3:iG,(mod-1)/(mid<<1));
for(Rg int j=0,I=mid<<1,x,y;j<limit;j+=I)
for(Rg int k=0,g=1;k<mid;++k,g=mul(g,Gn))
x=a[j+k],y=mul(a[j+k+mid],g),
a[j+k]=(x+y)%mod,a[j+k+mid]=(x-y+mod)%mod;
} if(tp) return; int inv=qpow(limit);
fp(i,0,limit-1) a[i]=mul(a[i],inv);
}
void Inv(int* a,int* b,int n){ static arr C,D;
if(n==1) return b[0]=qpow(a[0]),void();
Inv(a,b,n>>1),init(n<<1);
fp(i,0,n-1) C[i]=a[i],D[i]=b[i];
fp(i,n,limit-1) C[i]=D[i]=0; NTT(C,1),NTT(D,1);
fp(i,0,limit-1) C[i]=mul(C[i],mul(D[i],D[i]));
NTT(C,0); fp(i,n,limit-1) b[i]=0;
fp(i,0,n-1) b[i]=dec(inc(b[i],b[i]),C[i]);
}
inline void Direv(int* a,int* b,int n){
fp(i,1,n-1) b[i-1]=mul(a[i],i); b[n-1]=0;
}
inline void Inter(int* a,int* b,int n){
fp(i,1,n-1) b[i]=mul(a[i-1],qpow(i)); b[0]=0;
}
void Ln(int* a,int* b,int n){ static arr C,D;
Inv(a,C,n),Direv(a,D,n),init(n<<1);
fp(i,n,limit-1) C[i]=D[i]=0; NTT(C,1),NTT(D,1);
fp(i,0,limit-1) C[i]=mul(C[i],D[i]); NTT(C,0),Inter(C,b,n);
}
void Exp(int* a,int* b,int n){
if(n==1) return b[0]=1,void(); static arr B;
Exp(a,b,n>>1),Ln(b,B,n),B[0]=dec(a[0]+1,B[0]); init(n<<1);
fp(i,1,n-1) B[i]=dec(a[i],B[i]); fp(i,n,limit-1) B[i]=0;
NTT(B,1),NTT(b,1); fp(i,0,limit-1) b[i]=mul(b[i],B[i]);
NTT(b,0); fp(i,n,limit-1) b[i]=B[i]=0;
}
int main(){
/// pre calc
n=2e6,fac[0]=finv[0]=finv[1]=1;
fp(i,1,n) fac[i]=mul(fac[i-1],i);
fp(i,2,n) finv[i]=mul(mod-mod/i,finv[mod%i]);
fp(i,2,n) finv[i]=mul(finv[i-1],finv[i]);
fp(Stp,1,read()){ n=read(),m=read();
Rg int len=1; while(len<=n) len<<=1;
if(m==1){
Rg int x=1,ans=0;
fp(i,2,n) ans=inc(ans,mul(x,mul(fac[n],mul(finv[i-2],mul(finv[n-i],finv[i]))))),x=mul(x,n);
printf("%d\n",mul(mul(fac[n-2],ans),qpow(qpow(n,n-2))));
} else{
fp(i,0,n) A[i]=mul(qpow(i+1,m),finv[i]); Ln(A,B,len);
fp(i,0,n) B[i]=mul(B[i],n),A[i]=0; Exp(B,A,len);
printf("%d\n",mul(mul(fac[n-2],A[n-2]),qpow(qpow(n,n-2))));
memset(A,0,(len+2)<<3);
}
} return 0;
}

codechef : TREDEG , Trees and Degrees的更多相关文章

  1. Codechef Dynamic Trees and Queries

    Home » Practice(Hard) » Dynamic Trees and Queries Problem Code: ANUDTQSubmit https://www.codechef.co ...

  2. Codechef December Challenge 2014 Chef and Apple Trees 水题

    Chef and Apple Trees Chef loves to prepare delicious dishes. This time, Chef has decided to prepare ...

  3. codechef FUN WITH TREES

    题目大意: 给一棵树root=1的树: 给一些操作:u  v 的路径所有节点的node + val: 最后m个询问:u 节点(包括u) sum%mod 是多少. LCA + RMQ: 我们每次mark ...

  4. 【CodeChef EDGEST】Edges in Spanning Trees(树链剖分+树上启发式合并)

    点此看题面 大致题意: 给你两棵\(n\)个点的树,对于第一棵树中的每条边\(e_1\),求存在多少条第二棵树中的边\(e_2\),使得第一棵树删掉\(e_1\)加上\(e_2\).第二棵树删掉\(e ...

  5. codechef营养题 第二弹

    第二弾が始まる! codechef problems 第二弹 一.Backup Functions 题面 One unavoidable problem with running a restaura ...

  6. [C#] C# 知识回顾 - 表达式树 Expression Trees

    C# 知识回顾 - 表达式树 Expression Trees 目录 简介 Lambda 表达式创建表达式树 API 创建表达式树 解析表达式树 表达式树的永久性 编译表达式树 执行表达式树 修改表达 ...

  7. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  8. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

  9. [LeetCode] Unique Binary Search Trees 独一无二的二叉搜索树

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

随机推荐

  1. POJ-2594 Treasure Exploration floyd传递闭包+最小路径覆盖,nice!

    Treasure Exploration Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 8130   Accepted: 3 ...

  2. Codeforces Round #304 (Div. 2)-D. Soldier and Number Game,素因子打表,超时哭晕~~

    D. Soldier and Number Game time limit per test 3 seconds memory limit per test 256 megabytes input s ...

  3. spring-session(一)揭秘

    前言 在开始spring-session揭秘之前,先做下热脑(活动活动脑子)运动.主要从以下三个方面进行热脑: 为什么要spring-session 比较traditional-session方案和s ...

  4. Thinkphp5.0 的视图view的比较标签

    Thinkphp5.0 的视图view的比较标签 {eq name="a" value="10"} <p>相等</p> {else/} ...

  5. request详究

    本文主要是对在学习过程中遇到的request用法进行归纳总结,彻底的搞明白request在jsp中的作用. 百度百科的介绍如下: Request对象的作用是与客户端交互,收集客户端的Form.Cook ...

  6. IDUtil 永不重复的ID

    package com.xxx.common.util; import java.util.Random; /** * 各种id生成策略 * * @version 1.0 */ public clas ...

  7. Microsoft Office 2016 for win10 全版本下载+注册激活_Office教程学习网

    Microsoft Office 2016 for win10 全版本下载+注册激活_Office教程学习网 http://pan.baidu.com/s/1qWxdvT6

  8. 怎么让Excel显示时间时候能把秒显示出来

    Excel显示时间一般只显示年月日小时分钟怎么能够把秒也显示出来既如下显示 2007-04-11 12:00:00 将单元格格式设为"自定义",在"类型"框中输 ...

  9. [转] ASPNET Core 中获取应用程序物理路径

    如果要得到传统的ASP.Net应用程序中的相对路径或虚拟路径对应的服务器物理路径,只需要使用使用Server.MapPath()方法来取得Asp.Net根目录的物理路径,如下所示: // Classi ...

  10. 百度知道的代码复制粘贴到VB没有换行怎么办

    在如下所示的网页中,复制 粘贴到word文档,换行还是有的   再复制到VB6.0中还是可用的