高阶奇异值分解(High Order Singular Value  Decomposition,   HOSVD)

奇异值分解SVD(Singular
Value Decomposition)是线性代数中一种重要的矩阵分解

奇异值|A|=0
奇异值分解法是线性代数矩阵论中一种重要的矩阵分解法,在信号处理、统计学等领域有重要应用。
定义:设A为复数域内m*n阶矩阵,
A*表示A的共轭转置矩阵,A*A的n个非负特征值的算术平方根叫作矩阵A的奇异值。记为σi(A)。
如果把A*A的特征值记为λi(A*A),则σi(A)=sqrt(λi(A*A))。
同时,需要注意的是,任意矩阵都有奇异值。对于一般的方阵来说,其奇异值与特征值是没有关系的。
直观的解释[2]
在矩阵M的奇异值分解中 M = UΣV*
·U的列(columns)组成一套对M的正交"输入"或"分析"的基向量。这些向量是MM*的特征向量。
·V的列(columns)组成一套对M的正交"输出"的基向量。这些向量是M*M的特征向量。
·Σ对角线上的元素是奇异值,可视为是在输入与输出间进行的标量的"膨胀控制"。这些是M*M及MM*的奇异值,并与U和V的行向量相对应。

SVD分解

SVD分解是LSA的数学基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章。本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似。本节讨论的矩阵都是实数矩阵。

基础知识

1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数

2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵

3. 单位矩阵:如果对角矩阵中所有对角线上的元素都为1,该矩阵称为单位矩阵

4. 特征值:对一个M x M矩阵C和向量X,如果存在λ使得下式成立

则称λ为矩阵C的特征值,X称为矩阵的特征向量。非零特征值的个数小于等于矩阵的秩。

5. 特征值和矩阵的关系:考虑以下矩阵

该矩阵特征值λ1 = 30,λ2 = 20,λ3 = 1。对应的特征向量

假设VT=(2,4,6) 计算S x VT

有上面计算结果可以看出,矩阵与向量相乘的结果与特征值,特征向量有关。观察三个特征值λ1 = 30,λ2 = 20,λ3 = 1,λ3值最小,对计算结果的影响也最小,如果忽略λ3,那么运算结果就相当于从(60,80,6)转变为(60,80,0),这两个向量十分相近。这也表示了数值小的特征值对矩阵-向量相乘的结果贡献小,影响小。这也是后面谈到的低阶近似的数学基础。

矩阵分解

1. 方阵的分解

1) 设S是M x M方阵,则存在以下矩阵分解

其中U 的列为S的特征向量,为对角矩阵,其中对角线上的值为S的特征值,按从大到小排列:

2) 设S是M x M 方阵,并且是对称矩阵,有M个特征向量。则存在以下分解

其中Q的列为矩阵S的单位正交特征向量,仍表示对角矩阵,其中对角线上的值为S的特征值,按从大到小排列。最后,QT=Q-1,因为正交矩阵的逆等于其转置。

2. 奇异值分解

上面讨论了方阵的分解,但是在LSA中,我们是要对Term-Document矩阵进行分解,很显然这个矩阵不是方阵。这时需要奇异值分解对Term-Document进行分解。奇异值分解的推理使用到了上面所讲的方阵的分解。

假设C是M x N矩阵,U是M x M矩阵,其中U的列为CCT的正交特征向量,V为N x N矩阵,其中V的列为CTC的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解:

其中CCT和CTC的特征值相同,为

Σ为M X N,其中,其余位置数值为0,的值按大小降序排列。以下是Σ的完整数学定义:

σi称为矩阵C的奇异值。

用C乘以其转置矩阵CT得:

上式正是在上节中讨论过的对称矩阵的分解。

奇异值分解的图形表示:

从图中可以看到Σ虽然为M x N矩阵,但从第N+1行到M行全为零,因此可以表示成N x N矩阵,又由于右式为矩阵相乘,因此U可以表示为M x N矩阵,VT可以表示为N x N矩阵

3. 低阶近似

LSA潜在语义分析中,低阶近似是为了使用低维的矩阵来表示一个高维的矩阵,并使两者之差尽可能的小。本节主要讨论低阶近似和F-范数。

给定一个M x N矩阵C(其秩为r)和正整数k,我们希望找到一个M x N矩阵Ck,其秩不大于K。设X为C与Ck之间的差,X=C – Ck,X的F-范数为

当k远小于r时,称Ck为C的低阶近似,其中X也就是两矩阵之差的F范数要尽可能的小。

SVD可以被用与求低阶近似问题,步骤如下:

1. 给定一个矩阵C,对其奇异值分解:

2. 构造,它是将的第k+1行至M行设为零,也就是把的最小的r-k个(the
r-k smallest)奇异值设为零。

3. 计算Ck

回忆在基础知识一节里曾经讲过,特征值数值的大小对矩阵-向量相乘影响的大小成正比,而奇异值和特征值也是正比关系,因此这里选取数值最小的r-k个特征值设为零合乎情理,即我们所希望的C-Ck尽可能的小。完整的证明可以在Introduction to Information Retrieval[2]中找到。

我们现在也清楚了LSA的基本思路:LSA希望通过降低传统向量空间的维度来去除空间中的“噪音”,而降维可以通过SVD实现,因此首先对Term-Document矩阵进行SVD分解,然后降维并构造语义空间。

HOSVD高阶奇异值分解的更多相关文章

  1. c#语言-高阶函数

    介绍 如果说函数是程序中的基本模块,代码段,那高阶函数就是函数的高阶(级)版本,其基本定义如下: 函数自身接受一个或多个函数作为输入. 函数自身能输出一个函数,即函数生产函数. 满足其中一个条件就可以 ...

  2. swift 的高阶函数的使用代码

    //: Playground - noun: a place where people can play import UIKit var str = "Hello, playground& ...

  3. JavaScript高阶函数

    所谓高阶函数(higher-order function) 就是操作函数的函数,它接收一个或多个函数作为参数,并返回一个新函数. 下面的例子接收两个函数f()和g(),并返回一个新的函数用以计算f(g ...

  4. 分享录制的正则表达式入门、高阶以及使用 .NET 实现网络爬虫视频教程

    我发布的「正则表达式入门以及高阶教程」,欢迎学习. 课程简介 正则表达式是软件开发必须掌握的一门语言,掌握后才能很好地理解到它的威力: 课程采用概念和实验操作 4/6 分隔,帮助大家理解概念后再使用大 ...

  5. python--函数式编程 (高阶函数(map , reduce ,filter,sorted),匿名函数(lambda))

    1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层的函数,可以把复杂的任务分解成简单的任务,这种一步一步的分解可以称之为面向过程的程序设计.函数就是面向过程的程序设计的基本单元. ...

  6. python学习道路(day4note)(函数,形参实参位置参数匿名参数,匿名函数,高阶函数,镶嵌函数)

    1.函数 2种编程方法 关键词面向对象:华山派 --->> 类----->class面向过程:少林派 -->> 过程--->def 函数式编程:逍遥派 --> ...

  7. Scala的函数,高阶函数,隐式转换

    1.介绍 2.函数值复制给变量 3.案例 在前面的博客中,可以看到这个案例,关于函数的讲解的位置,缺省. 4.简单的匿名函数 5.将函数做为参数传递给另一个函数 6.函数作为输出值 7.类型推断 8. ...

  8. Python之路 day3 高阶函数

    #!/usr/bin/env python # -*- coding:utf-8 -*- #Author:ersa """ 变量可以指向函数,函数的参数能接收变量, 那么 ...

  9. JavaScript高阶函数 map reduce filter sort

    本文是笔者在看廖雪峰老师JavaScript教程时的个人总结 高阶函数            一个函数就接收另一个函数作为参数,这种函数就称之为高阶函数          1.高阶函数之map:   ...

随机推荐

  1. JS提前声明和定义方式

    来源:JS的函数定义方式以及对声明的提前 以下代码,声明语句会被提前到当前作用域(全局作用域和函数作用域)的顶部.但赋值语句不会提前,依然留在原地 var x = function(){}; var ...

  2. 如何用纯 CSS 为母亲节创作一颗像素画风格的爱心

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/LmrZVX 可交互视频教 ...

  3. HTML中复选框的使用方法

    <select id="question"> {# 常见问题.ajax用editor.html('1231254')填充#} <option value=&quo ...

  4. LeetCode(87) Gray Code

    题目 The gray code is a binary numeral system where two successive values differ in only one bit. Give ...

  5. Python变量及数据类型

    所有编程语言几乎都会有 ’ 变量‘ ,如 a = 2,用一个a变量指代数字2,在Python中,一切皆对象,因此在变量赋值的时候实际上是在内存中开辟了一块存储变量内容的内存空间对象. 对象可以指定不同 ...

  6. C#中为什么不能再方法里定义静态变量(Static)

    c#的静态变量是在对象生成的时候分配内存空间的,而不是函数执行的时候. 如果在函数里定义,那么这个变量就需要在函数执行的时候分配内存空间,这是C#不允许的,至于为什么不允许,个是因为垃圾回收机制的问题 ...

  7. vs code 使用心得

    Jetbrains 家族的软件适合java,python开发,但是对与rust,shell等的开发,则显得有些臃肿,需要一款轻快的编辑器,经过挑选,在sublime3 与 vs code 中选则了vs ...

  8. 海战(洛谷 P1331)

    题目描述 在峰会期间,武装部队得处于高度戒备.警察将监视每一条大街,军队将保卫建筑物,领空将布满了F-2003飞机.此外,巡洋船只和舰队将被派去保护海岸线.不幸的是因为种种原因,国防海军部仅有很少的几 ...

  9. 【永久激活,视频教程,超级详细】IntelliJ idea 2018.3安装+激活+汉化

    简介 IDEA 全称IntelliJ IDEA,是用于java语言开发的集成环境(也可用于其他语言),IntelliJ在业界被公认为最好的java开发工具之一,尤其在智能代码助手.代码自动提示.重构. ...

  10. 如何使用eclipse for c/c++ 配置环境编写第一个C程序

    因为VS太大还要安装太多的插件,,,所以想用eclipse编写C语言... 1.下载eclipse for c/c++版本  去官网即可下载   https://www.eclipse.org/dow ...