Lucas:

卢卡斯定理说白了只有一条性质

$$ C^n_m \equiv C^{n/p}_{m/p} \times C^{n \bmod p}_{m \bmod p} \ (mod \ \ p) $$

用于 m,n 很大时快速求组合数。(p 为质数)

CODE:

  1. long long Lucas(long long n,long long m){
  2. if(m==)return ;
  3. if(n<m)return ;
  4. if(n<p&&m<p)return fac[n]*inv[n-m]%p*inv[m]%p;
  5. return Lucas(n/p,m/p)*Lucas(n%p,m%p)%p;
  6. }

证明:

前置技能:二项式定理

对于任意质数p,根据费马小定理有:

然后我们把(1+x)^n这个式子处理一下:

然后同时我们还有:

观察一下两个式子x的m次方的系数,可以得到:

然后我们回到最开始的递归形式的那个式子,会发现…… 就证完了OvO

( 引用自 hy 大佬课件)

Lucas 卢卡斯定理的更多相关文章

  1. CRT中国剩余定理 & Lucas卢卡斯定理

    数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...

  2. Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)

    Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...

  3. Lucas卢卡斯定理

    当$p$为素数时 $$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$$ 设$n=s*p+q,m\equiv t*p+r(q,r<=p)$ 我 ...

  4. Lucas(卢卡斯)定理

    公式 $$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p为素数)$$ 代码如下 typedef long long ll; ll mod_pow(ll x, ...

  5. 卢卡斯定理 Lucas (p为素数)

    证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...

  6. 卢卡斯定理Lucas

    卢卡斯定理Lucas 在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m ...

  7. 数论篇7——组合数 & 卢卡斯定理(Lucas)

    组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...

  8. Lucas(卢卡斯)定理

    Lucas定理 对于C(m,n)%P(P是质数)这样的问题,可以通过预处理阶乘和阶乘的逆元,来快速计算.但是当m,n大于P时,就不能保证m,n与P互质了,但不互质的情况下,乘法逆元不存在,此时就需要卢 ...

  9. 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)

    [模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...

随机推荐

  1. select *from where 和select *from jion on 语句的差别

    https://zhidao.baidu.com/question/541791438.html select 学号 a,成绩 a,姓名 b from 成绩表 a,学生表 b where a.学号=b ...

  2. HTML5微信播放全屏问题的解决方法

    在ios和安卓手机里的微信下播放视频时,会遇到不少问题,例如需要手动点击,视频才会播放,并且视频会跳出微信框,出现控制条,如果视频不是腾讯视频,播放完毕会出现腾讯视频的广告推送等问题 解决办法:给vi ...

  3. MAC 安装汇编编译工具 NASM

    直接运行nasm报错: 开始安装: brew reinstall nasm

  4. Active Directory网域

    Active Directory网域 3.1Windows网络的管理方式 3.1.1工作组模式 工作组由一组用网络连接在一起的计算机组成,他们将计算机内的资源共享给用户访问.工作组网络也被称为“对等式 ...

  5. Shell脚本调用SQL文格式

    Shell脚本调用SQL文格式 1. 定义需要执行的SQL文,以及需要输出文件 OUTFILE=\${DATADIR}/\${FILENAME} SQLFILE=\${DATADIR}/check_t ...

  6. CS193p Lecture 11 - UITableView, iPad

    UITableView 的 dataSource 和 delegate dataSource 是一种协议,由 UITableView 实现,将 Model 的数据给到 UITableView: del ...

  7. bzoj3545 [ONTAK2010]Peaks、bzoj3551 [ONTAK2010]Peaks加强版

    题目描述: bzoj3545,luogu bzoj3551 题解: 重构树+线段树合并. 可以算是板子了吧. 代码(非强制在线): #include<cstdio> #include< ...

  8. mcu读写调式

    拿仿真SPIS为例: 对于其他外设(UART.SPIM.I2S.I2C...)都是一个道理. 当MCU写时:主要对一个寄存器进行写,此寄存器是外设的入口(基本都会做并转串逻辑). spis_tx_da ...

  9. 《嵌入式linux应用程序开发标准教程》笔记——9.多线程编程

    线程是轻量级进程,创建线程的开销要比进程小得多,在大型程序中应用广泛. 9.1 线程概述 进程包含自己的代码.数据.堆栈.资源等等,创建和切换的开销比较大: 线程是轻量级的进程,调度的最小单元,同一个 ...

  10. LeetCode(105) Construct Binary Tree from Preorder and Inorder Traversal

    题目 Given preorder and inorder traversal of a tree, construct the binary tree. Note: You may assume t ...