Lucas:

卢卡斯定理说白了只有一条性质

$$ C^n_m \equiv C^{n/p}_{m/p} \times C^{n \bmod p}_{m \bmod p} \ (mod \ \ p) $$

用于 m,n 很大时快速求组合数。(p 为质数)

CODE:

 long long Lucas(long long n,long long m){
if(m==)return ;
if(n<m)return ;
if(n<p&&m<p)return fac[n]*inv[n-m]%p*inv[m]%p;
return Lucas(n/p,m/p)*Lucas(n%p,m%p)%p;
}

证明:

前置技能:二项式定理

对于任意质数p,根据费马小定理有:

然后我们把(1+x)^n这个式子处理一下:

然后同时我们还有:

观察一下两个式子x的m次方的系数,可以得到:

然后我们回到最开始的递归形式的那个式子,会发现…… 就证完了OvO

( 引用自 hy 大佬课件)

Lucas 卢卡斯定理的更多相关文章

  1. CRT中国剩余定理 & Lucas卢卡斯定理

    数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainde ...

  2. Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)

    Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...

  3. Lucas卢卡斯定理

    当$p$为素数时 $$C_n^m\equiv C_{n/p}^{m/p}*C_{n\%p}^{m\%p}(mod\ p)$$ 设$n=s*p+q,m\equiv t*p+r(q,r<=p)$ 我 ...

  4. Lucas(卢卡斯)定理

    公式 $$C_n^m\%p=C_{n/p}^{m/p}*C_{n\%p}^{m\%p}\%p~~(p为素数)$$ 代码如下 typedef long long ll; ll mod_pow(ll x, ...

  5. 卢卡斯定理 Lucas (p为素数)

    证明摘自:(我网上唯一看得懂的证明) https://blog.csdn.net/alan_cty/article/details/54318369 结论:(显然递归实现)lucas(n,m)=luc ...

  6. 卢卡斯定理Lucas

    卢卡斯定理Lucas 在数论中,\(Lucas\)定理用于快速计算\(C^m_n ~ \% ~p\),即证明\(C^m_n = \prod_{i = 0} ^kC^{m_i}_{n_i}\)其中\(m ...

  7. 数论篇7——组合数 & 卢卡斯定理(Lucas)

    组合数 组合数就是高中排列组合的知识,求解组合数C(n,m),即从n个相同物品中取出m个的方案数. 求解方式 求解通式:$C^{m}_{n}=\dfrac {n!}{m!\left( n-m\righ ...

  8. Lucas(卢卡斯)定理

    Lucas定理 对于C(m,n)%P(P是质数)这样的问题,可以通过预处理阶乘和阶乘的逆元,来快速计算.但是当m,n大于P时,就不能保证m,n与P互质了,但不互质的情况下,乘法逆元不存在,此时就需要卢 ...

  9. 【luogu P3807】【模板】卢卡斯定理/Lucas 定理(含 Lucas 定理证明)

    [模板]卢卡斯定理/Lucas 定理 题目链接:luogu P3807 题目大意 求 C(n,n+m)%p 的值. p 保证是质数. 思路 Lucas 定理内容 对于非负整数 \(n\),\(m\), ...

随机推荐

  1. CF 1119F Niyaz and Small Degrees

    打VP的时候由于CXR和XRY切题太快了导致我只能去写后面的题了 然而VP的时候大概还有一小时时想出了\(O(n^2\log n)\)的暴力,然后过了二十分钟才想到删点的优化 结果细节很多当然是写不出 ...

  2. 官方webupload上传多个文件或者图片的方法

    文件上传 页面代码: <!--引入CSS--> <link rel="stylesheet" type="text/css" href=&qu ...

  3. javascript顺序数组简单实现个二分查找

    直接上码了注释写得很详细: function bsearch(A,x){ //l:查找范围左 r:查找范围右 let l = 0, //查询范围左边界 r = A.length-1, //查找范围右边 ...

  4. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  5. CF-1082(渣渣只做了前三个)

    链接:http://codeforces.com/contest/1082 A. Vasya and Book 题意: n,x,y,d 一本电子书有n页,每一次翻动只能往前或者往后翻d页.求x-> ...

  6. [LUOGU] 1892 团伙

    题目描述 1920年的芝加哥,出现了一群强盗.如果两个强盗遇上了,那么他们要么是朋友,要么是敌人.而且有一点是肯定的,就是: 我朋友的朋友是我的朋友: 我敌人的敌人也是我的朋友. 两个强盗是同一团伙的 ...

  7. MariaDB数据库(四)

    1. 数据库备份与恢复 数据库备份用命令mysqldump ,MySQL的备份文件一般以.sql结尾,做到见名知意 #备份testdb数据库重定向为testdb.sql文件, [root@localh ...

  8. centos配置本地yum源和光盘挂载

    说明:以centos6.5为例创建本地yun源,centos7的创建方法和centos6的是一样的. 创建挂载目录: mkdir /dvd 开机自动挂载光盘 echo /dev/cdrom   /dv ...

  9. Django 模版语法 三

    使用自定义simple_tag 在 app01 下面创建 templatetags 文件夹,在创建 my_tag.py 文件,内容如下: from django import template fro ...

  10. rootfs注册挂载过程分析

    参考:Linux Filesystem: 解析 Linux 中的 VFS 文件系统机制 主要代码, init_rootfs(); init_mount_tree(); 1.init_rootfs()解 ...