hdu4035 Maze (树上dp求期望)
dp求期望的题。
题意:
有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
从结点1出发,开始走,在每个结点i都有3种可能:
1.被杀死,回到结点1处(概率为ki)
2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条
求:走出迷宫所要走的边数的期望值。 设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。 叶子结点:
E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);//因为是到达,i点跑出去的期望步数,所以逃出去的那个概率应该乘以0
= ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei); 非叶子结点:(m为与结点相连的边数)
E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
= ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei); 设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci; 对于非叶子结点i,设j为i的孩子结点,则
∑(E[child[i]]) = ∑E[j]
= ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
= ∑(Aj*E[1] + Bj*E[i] + Cj)
带入上面的式子得
(1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
由此可得
Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj); 对于叶子结点
Ai = ki;
Bi = 1 - ki - ei;
Ci = 1 - ki - ei; 从叶子结点开始,直到算出 A1,B1,C1; E[1] = A1*E[1] + B1*0 + C1;
所以
E[1] = C1 / (1 - A1);
若 A1趋近于1则无解...
上面这一问题,中发现E[1]消不去,然后就用算出A,B,C的方式来求解。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<vector>
using namespace std;
const int MAXN=;
const double eps=1e-;//这里1e-8会WA。设为1e-9和1e-10可以
double k[MAXN],e[MAXN];
double A[MAXN],B[MAXN],C[MAXN]; int T,n,u,v,iCase;
vector<int>vec[MAXN];//存树 bool dfs(int t,int pre)//t的根结点是pre
{
int m=vec[t].size();//点t的度
A[t]=k[t];
B[t]=(-k[t]-e[t])/m;
C[t]=-k[t]-e[t];
double tmp=;
for(int i=;i<m;i++)
{
int v=vec[t][i];
if(v==pre)continue;
if(!dfs(v,t))return false;
A[t]+=(-k[t]-e[t])/m*A[v];
C[t]+=(-k[t]-e[t])/m*C[v];
tmp+=(-k[t]-e[t])/m*B[v];
}
if(fabs(tmp-)<eps)return false;
A[t]/=(-tmp);
B[t]/=(-tmp);
C[t]/=(-tmp);
return true;
}
int main()
{
scanf("%d",&T);
while(T--)
{
iCase++;
scanf("%d",&n);
for(int i=;i<=n;i++)vec[i].clear();
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
vec[u].push_back(v);
vec[v].push_back(u);
}
for(int i=;i<=n;i++)
{
scanf("%lf%lf",&k[i],&e[i]);
k[i]/=;
e[i]/=;
}
printf("Case %d: ",iCase);
if(dfs(,-)&&fabs(-A[])>eps)
{
printf("%.6lf\n",C[]/(-A[]));
}
else printf("impossible\n");
}
}
hdu4035 Maze (树上dp求期望)的更多相关文章
- HDU3853-LOOPS(概率DP求期望)
LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others) Total Su ...
- Poj 2096 (dp求期望 入门)
/ dp求期望的题. 题意:一个软件有s个子系统,会产生n种bug. 某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中. 求找到所有的n种bug,且每个子系统都找到bug,这样所要 ...
- POJ2096 Collecting Bugs(概率DP,求期望)
Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...
- POJ 2096 (dp求期望)
A - Collecting Bugs Time Limit:10000MS Memory Limit:64000KB 64bit IO Format:%I64d & %I64 ...
- HDU4035 Maze (概率DP)
转:https://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, ...
- HDU-4035 Maze (概率DP求期望)
题目大意:在一个树形迷宫中,以房间为节点.有n间房间,每间房间存在陷阱的概率为ki,存在出口的概率为ei,如果这两种情况都不存在(概率为pi),那么只能做出选择走向下一个房间(包括可能会走向上一个房间 ...
- loj 1038(dp求期望)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=25915 题意:求一个数不断地除以他的因子,直到变成1的时候 除的次 ...
- HDU-3853 LOOPS(概率DP求期望)
题目大意:在nxm的方格中,从(1,1)走到(n,m).每次只能在原地不动.向右走一格.向下走一格,概率分别为p1(i,j),p2(i,j),p3(i,j).求行走次数的期望. 题目分析:状态转移方程 ...
- HDU-4405 Aeroplane chess(概率DP求期望)
题目大意:一个跳棋游戏,每置一次骰子前进相应的步数.但是有的点可以不用置骰子直接前进,求置骰子次数的平均值. 题目分析:状态很容易定义:dp(i)表示在第 i 个点出发需要置骰子的次数平均值.则状态转 ...
随机推荐
- Linux配置临时IP地址
# ifconfig 查看网卡信息,如下图所示: # ifconfig eth0 192.168.0.107 eth0表示第一块网卡,Linux中所有的设配都是文件,所以eth0是第一块网卡的文件名, ...
- Gym 100342F Move to Front (树状数组动态维护和查询)
用树状数组动态和查询修改排名. 树状数组可以很方便地查询前缀和,那么可以利用这一特点,记录一个点在树状数组里最后一次出现的位置, 查询出这个位置,就可以知道这个点的排名了.更改这个点的排名的时候只要把 ...
- fgetc, fgets, getc, getchar, gets, ungetc - 输入字符和字符串
总览 (SYNOPSIS) #include <stdio.h> int fgetc(FILE *stream); char *fgets(char *s, int size, FILE ...
- urlrrtrieve()实例_下载微博短视频
1.确定目标 在微博页面找一想要下载的短视频,通过审查元素找到视频的url. 如://f.us.sinaimg.cn/00150tBNlx07l0qjoSJi01040201m7z90k010.mp4 ...
- PyCharm如何配置断点调试功能
1. 点击菜单 PyCharm -> Preferences.. 2. 在左侧菜单栏找到Project:Django - > Project Interpreter 并点击配置 Proje ...
- C#编写高并发数据库控制
往往大数据量,高并发时, 瓶颈都在数据库上, 好多人都说用数据库的复制,发布, 读写分离等技术, 但主从数据库之间同步时间有延迟.代码的作用在于保证在上端缓存服务失效(一般来说概率比较低)时,形成倒瓶 ...
- Bootstrap历练实例:分页的大小
分页的大小 下面的实例演示了上表中所讨论的 class .pagination-* 的用法: <!DOCTYPE html><html><head><meta ...
- mysql 特定查询条件下导致的大海捞针
order表: order type gmt_create type 取值: 0,1 其中0非常多,1非常少. 当查询条件里 select * from order where type=0 an ...
- 获得Java中System对应一些属性值
public static void main(String[] args){ System.out.println("Java运行时环境版本:\n"+System.getProp ...
- windows 7虚拟机与主机不能互ping通,但是都能与网关ping通
这里是在Windows 10的环境下使用VMware安装了一个Windows 7的虚拟机,虚拟机中是使用桥接的方式.结果发现虚拟机不能与物理机互通,但是却能与网关互通.查看虚拟机和物理机的IP发现都是 ...