拆分的情况下,发现f数组本身并不是很好递推。

因为f(123)=f(123)/f(12+3)/f(1+2+3)。

然后考虑f可以怎么表示f(n)=a0*M^n M为转移矩阵。

然后发现 f(x+y)=a0*M(x+y), 所以只需要对M矩阵进行DP即可。

这样子每一个位置就可以表示为若干转移矩阵的和,然后就可以利用矩阵的相乘进行递推。

最后直接用原向量乘上转移矩阵即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define ll long long
#define F(i,j,k) for (ll i=j;i<=k;++i)
#define D(i,j,k) for (ll i=j;i>=k;--i)
const ll md=998244353; ll m,l;char s[505]; struct matrix{
ll x[6][6];
void init(){memset(x,0,sizeof x);}
void build1(){
init();
x[1][1]=1;
}
void build2(){
init();
F(i,1,m) x[i][1]=1;
F(i,1,m-1) x[i][i+1]=1;
}
void build3(){
init();
F(i,1,m) x[i][i]=1;
}
matrix operator * (matrix b) {
matrix ret;
ret.init();
F(i,1,m) F(j,1,m)
{
F(k,1,m)
ret.x[i][j]=ret.x[i][j]+x[i][k]*b.x[k][j];
ret.x[i][j]%=md;
}
return ret;
}
matrix operator + (matrix b) {
matrix ret;
ret.init();
F(i,1,m) F(j,1,m)
ret.x[i][j]=((ll)x[i][j]+(ll)b.x[i][j])%md;
return ret;
}
}dp[505],one,c[11][501],turn,now,ans; int main()
{
scanf("%s",s+1);l=strlen(s+1);
scanf("%lld",&m);
F(i,0,l) dp[i].init();
one.build1();
turn.build2();
c[0][0].build3();
F(i,1,10) c[i][0]=c[i-1][0]*turn;
F(i,1,l-1)
{
c[0][i]=c[0][i-1];
c[1][i]=c[10][i-1];
F(j,2,10)
{
c[j][i]=c[j-1][i]*c[10][i-1];
}
}
dp[0].build3();
F(i,1,l)
{
now.build3();
D(j,i,1)
{
now=now*c[s[j]-'0'][i-j];
dp[i]=dp[i]+dp[j-1]*now;
}
}
ans=dp[l]*one;
printf("%lld\n",ans.x[1][1]);
}

  

BZOJ 4037 [HAOI2015]数字串拆分 ——动态规划的更多相关文章

  1. bzoj 4037: [HAOI2015]数字串拆分【dp+矩阵加速】

    首先f长得就很像能矩阵优化的,先构造转移矩阵(这里有一点神奇的地方,我看网上的blog和我构造的矩阵完全不一样还以为我的构造能力又丧失了,后来惊奇的发现我把那篇blog里的构造矩阵部分换成我的构造方式 ...

  2. BZOJ4037:[HAOI2015]数字串拆分——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4037 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时 ...

  3. [HAOI2015]数字串拆分

    题目描述 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导0),将他们加 ...

  4. bzoj4037 [HAOI2015]数字串拆分

    Description 你有一个长度为n的数字串.定义f(S)为将S拆分成若干个1~m的数的和的方案数,比如m=2时,f(4)=5,分别为4=1+1+1+1你可以将这个数字串分割成若干个数字(允许前导 ...

  5. 洛谷3176 [HAOI2015]数字串拆分 (矩阵乘法+dp)

    qwq真的是一道好题qwq自己做基本是必不可能做出来的. 首先,如果这个题目只是求一个\(f\)数组的话,那就是一道裸题. 首先,根据样例 根据题目描述,我们能发现其实同样数字的不同排列,也是属于不同 ...

  6. loj#2128. 「HAOI2015」数字串拆分 矩阵乘法

    目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...

  7. 【LOJ】#2128. 「HAOI2015」数字串拆分

    题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...

  8. [bzoj P4504] K个串

    [bzoj P4504] K个串 [题目描述] 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计一次 ...

  9. 解决 PHPExcel 长数字串显示为科学计数

    解决 PHPExcel 长数字串显示为科学计数 在excel中如果在一个默认的格中输入或复制超长数字字符串,它会显示为科学计算法,例如身份证号码,解决方法是把表格设置文本格式或在输入前加一个单引号. ...

随机推荐

  1. Yii 2.0排序功能的使用

    在Yii2.0项目的实际开发中,经常会遇到使用Yii2.0自带的排序功能.下面是排序功能的具体使用方法. 一.设置排序规则 注意引入Sort类,如:use yii\data\Sort; // 设置排序 ...

  2. 不同版本的 Tomcat 设置用户名密码 的方法

    Tomcat : tomcat根目录\conf\tomcat-users.xml,找到 <tomcat-users> 标签,在后面添加 <user username="ad ...

  3. SQLServer查询死锁

    --查询死锁 select request_session_id spid, OBJECT_NAME(resource_associated_entity_id) tableName from sys ...

  4. CSS-学习笔记五

    1.  权重: 内联:A ID:B Class:C 标签:D 继承:0 2.  文字阴影text-shadow 3.  文字缩进text-index 4.  文本换行 5.  文本溢出 6.  圆角 ...

  5. (一)SpringMVC之警告: No mapping found for HTTP request with URI

    这个警告往往是因为url路径不正确. 所以从三个地方下手: 1.springmvc-config.xml中的配置handle,看看是不是因为handle没有配置导致的. 2.如果是使用注解的方式的话, ...

  6. Linux Device Driver 学习(1)

    Linux Device Driver 学习(1) 一.搭建虚拟机开发环境 1.选择虚拟机VirtualBox,官网下载.deb包安装: VirtualBox Linux 5.1.6 下载fedora ...

  7. UVA 1151 Buy or Build (最小生成树)

    先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...

  8. iOS7.1企业应用"无法安装应用程序 因为证书无效"的解决方案

    今天升级了iOS7.1后发现通过之前的url无法安装企业应用了,一直提示“无法安装应用程序 因为http://xxx.xxx.xxx证书无效”,折腾了一番,终于在StackOverFlow上找到了答案 ...

  9. 一条SQL语句在MySQL中是如何执行的

    概览 本篇文章会分析下一个sql语句在mysql中的执行流程,包括sql的查询在mysql内部会怎么流转,sql语句的更新是怎么完成的. 一.mysql架构分析 mysql主要分为Server层和存储 ...

  10. Makefile入门教程

    Makefile介绍 make是一个命令工具,它解释Makefile 中的指令(应该说是规则).在Makefile文件中描述了整个工程所有文件的编译顺序.编译规则.Makefile 有自己的书写格式. ...