title: 【线性代数】5-2:置换和余因子(Permutations and Cofactors)

categories:

  • Mathematic
  • Linear Algebra

    keywords:
  • Determinants
  • ‘Pivot Formula’
  • ‘Big Formula’
  • ‘Cofactors Formula’
  • Cofactors
  • Permutations

    toc: true

    date: 2017-11-03 09:50:36

Abstract: 行列式的几种求法,以及相关的衍生问题

Keywords: Determinants,‘Pivot Formula’,‘Big Formula’,‘Cofactors Formula’,Cofactors,Permutations

开篇废话

今天写的是行列式的三种计算方法,瞬间想到了孔乙己的茴香豆的四种写法,一个多少有点文化的人(被老师们解读为迂腐)却被一些没什么文化的人嘲笑挖苦;如果孔乙己是个那个时代的悲剧,那我们自己会不会成为这个时代的悲剧呢?读书无用论,某首富的“北大,清华大不如胆大”论,如果思维继续,结果最后肯定是喜闻乐见

The Pivot Formula

Pivot的方式求行列式的值,Pro. Stang说这是matlab的做法,也就是计算机求行列式一般通过消元后得到Pivot,然后将所有Pivots相乘,得到行列式的值,这里有个主意的地方,我们反复强调,如果不是满rank的话,Pivot必然在某些行或者列里面不存在,那么这个矩阵是奇异矩阵,行列式值为0。

能够支持Pivot的乘积等于行列式的原因是上文关于properties 中Rule5 是消元的主要过程,rule5 告诉我们消元前后行列式的值不变,但是有的时候我们不光要消元还要进行行交换,这个是随机次数的,所以行列式的值等于Pivot乘积的前面正负号不明确,故:

det(A)=±p11p22…pnn
det(A)=\pm p_{11}p_{22}\dots p_{nn}
det(A)=±p11​p22​…pnn​

从另一个角度讲,如果把消元过程用矩阵方式表达 PA=LUPA=LUPA=LU LU分解的矩阵形式,通过rule8 ,就能知道

det(P)det(A)=det(L)det(U)det(P)=±1det(L)=1det(A)=±det(U)
det(P)det(A)=det(L)det(U)\\
det(P)=\pm 1\\
det(L)=1\\
det(A)=\pm det(U)
det(P)det(A)=det(L)det(U)det(P)=±1det(L)=1det(A)=±det(U)

这样的话,U的对角线是由Pivot组成的,这个就是Pivot Formula的另一个切入点,都能证明行列式的pivot formula的正确性。

Pivot过程就是消元的过程,通过消元,得到行列式的值。

通过相乘的过程我们还能得到一个子矩阵的行列式,比如矩阵AAA的左上角的一块小的矩阵 A′A'A′ 他的行列式等于这个子矩阵覆盖的pivot的值(没有行变换)

det(A′)=p11p22…pkkif det(A′′)=p11p22…pk−1k−1pkk=det(A′)det(A′′)
det(A')=p_{11}p_{22}\dots p_{kk} \\
if \, det(A'')=p_{11}p_{22}\dots p_{k-1k-1}\\
p_{kk}=\frac{det(A')}{det(A'')}
det(A′)=p11​p22​…pkk​ifdet(A′′)=p11​p22​…pk−1k−1​pkk​=det(A′′)det(A′)​

The big Formula

本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-5-2转载请标明出处

【线性代数】5-2:置换和余因子(Permutations and Cofactors)的更多相关文章

  1. Pascal Hexagrammum Mysticum 的深度探索

        PASCAL . Hexagrammum Mysticum . (六角迷魂图) . 的深度探索 . 英中对比.英文蓝色,译文黑色,译者补充说明用紫红色 (已校完,但尚未定稿,想再整理并补充内容 ...

  2. POJ2369 Permutations(置换的周期)

    链接:http://poj.org/problem?id=2369 Permutations Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  3. Codeforces 987E Petr and Permutations(数组的置换与复原 、结论)

    题目连接: Petr and Permutations 题意:给出一个1到n的序列,Petr打乱了3n次,Um_nik打乱了7n+1次,现在给出被打乱后的序列,求是谁打乱的. 题解:因为给出了一个3* ...

  4. 【UVA 11077】 Find the Permutations (置换+第一类斯特林数)

    Find the Permutations Sorting is one of the most used operations in real life, where Computer Scienc ...

  5. UVA - 11077 Find the Permutations (置换)

    Sorting is one of the most usedoperations in real life, where Computer Science comes into act. It is ...

  6. UVa 11077 Find the Permutations(置换+递推)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35431 [思路] 置换+递推 将一个排列看作一个置换,分解为k个循 ...

  7. poj 2369 Permutations 置换

    题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...

  8. poj 2369 Permutations (置换入门)

    题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...

  9. 【CF736D】Permutations 线性代数+高斯消元

    [CF736D]Permutations 题意:有一个未知长度为n的排列和m个条件,第i个条件$(a_i,b_i)$表示第$a_i$个位置上的数可以为$b_i$.保证最终合法的排列的个数是奇数.现在有 ...

随机推荐

  1. k8s-gitlab搭建

    Gitlab官方提供了 Helm 的方式在 Kubernetes 集群中来快速安装,但是在使用的过程中发现 Helm 提供的 Chart 包中有很多其他额外的配置,所以我们这里使用自定义的方式来安装, ...

  2. centos7搭建EFK日志分析系统

    前言 EFK可能都不熟悉,实际上EFK是大名鼎鼎的日志系统ELK的一个变种 在没有分布式日志的时候,每次出问题了需要查询日志的时候,需要登录到Linux服务器,使用命令cat -n xxxx|grep ...

  3. hdu 6375 度度熊学队列 (链表模拟)

    度度熊正在学习双端队列,他对其翻转和合并产生了很大的兴趣.  初始时有 N 个空的双端队列(编号为 1 到 N ),你要支持度度熊的 Q 次操作. ①1 u w val 在编号为 u 的队列里加入一个 ...

  4. poj 3069 继续弱鸡的贪心

    题意:给出指路石的范围,问最小需要几个指路石可以覆盖所有的军队. 题解:排序一遍,然后扫出起始区间和终止区间,就可以求出最小的覆盖数了 ac代码: #include <iostream> ...

  5. 恺撒密码 I

    恺撒密码 I ‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭ ...

  6. Recastnavigation 创建 off-mesh link 的潜规则

    Recastnavigation 在创建off-mesh link 时,发现有的off-mesh link 无法寻路(虽然在地图上能看到off-mesh link 的连线   在Google Grou ...

  7. session过期,登录页面嵌套问题解决

    项目主页是框架模式时,如果登录后长时间没有活动(操作),存储在session中的登录信息过期了,这时再去进行操作时,就会出现登录页面嵌套的问题,怎么解决呢? 这里介绍一种方法,只需要加上一段javas ...

  8. vs-code 的常用插件

    最近编辑器转移至VS-Code上面了,为什么抛弃sublime呢,因为,sublime在项目逐渐变大的过程中(项目已上万行,还在不停继续变大),sublime会出现卡顿,反应缓慢,甚至未响应状态,基于 ...

  9. JavaScript--常用对象的属性及方法(2)

    Array对象(数组) 数组最常用属性:length 获取数组的元素个数 方法: toString() 将数组转换为字符串 var arr = ["武汉市","成都市&q ...

  10. 安装theano踩过的坑(gpu)

    参考 http://deeplearning.net/software/theano/install.html TensorFlow出了点问题 python3.7的环境 pip安装 keras已经安装 ...