【线性代数】5-2:置换和余因子(Permutations and Cofactors)
title: 【线性代数】5-2:置换和余因子(Permutations and Cofactors)
categories:
- Mathematic
- Linear Algebra
keywords: - Determinants
- ‘Pivot Formula’
- ‘Big Formula’
- ‘Cofactors Formula’
- Cofactors
- Permutations
toc: true
date: 2017-11-03 09:50:36
Abstract: 行列式的几种求法,以及相关的衍生问题
Keywords: Determinants,‘Pivot Formula’,‘Big Formula’,‘Cofactors Formula’,Cofactors,Permutations
开篇废话
今天写的是行列式的三种计算方法,瞬间想到了孔乙己的茴香豆的四种写法,一个多少有点文化的人(被老师们解读为迂腐)却被一些没什么文化的人嘲笑挖苦;如果孔乙己是个那个时代的悲剧,那我们自己会不会成为这个时代的悲剧呢?读书无用论,某首富的“北大,清华大不如胆大”论,如果思维继续,结果最后肯定是喜闻乐见
The Pivot Formula
Pivot的方式求行列式的值,Pro. Stang说这是matlab的做法,也就是计算机求行列式一般通过消元后得到Pivot,然后将所有Pivots相乘,得到行列式的值,这里有个主意的地方,我们反复强调,如果不是满rank的话,Pivot必然在某些行或者列里面不存在,那么这个矩阵是奇异矩阵,行列式值为0。
能够支持Pivot的乘积等于行列式的原因是上文关于properties 中Rule5 是消元的主要过程,rule5 告诉我们消元前后行列式的值不变,但是有的时候我们不光要消元还要进行行交换,这个是随机次数的,所以行列式的值等于Pivot乘积的前面正负号不明确,故:
det(A)=±p11p22…pnn
det(A)=\pm p_{11}p_{22}\dots p_{nn}
det(A)=±p11p22…pnn
从另一个角度讲,如果把消元过程用矩阵方式表达 PA=LUPA=LUPA=LU LU分解的矩阵形式,通过rule8 ,就能知道
det(P)det(A)=det(L)det(U)det(P)=±1det(L)=1det(A)=±det(U)
det(P)det(A)=det(L)det(U)\\
det(P)=\pm 1\\
det(L)=1\\
det(A)=\pm det(U)
det(P)det(A)=det(L)det(U)det(P)=±1det(L)=1det(A)=±det(U)
这样的话,U的对角线是由Pivot组成的,这个就是Pivot Formula的另一个切入点,都能证明行列式的pivot formula的正确性。
Pivot过程就是消元的过程,通过消元,得到行列式的值。
通过相乘的过程我们还能得到一个子矩阵的行列式,比如矩阵AAA的左上角的一块小的矩阵 A′A'A′ 他的行列式等于这个子矩阵覆盖的pivot的值(没有行变换)
det(A′)=p11p22…pkkif det(A′′)=p11p22…pk−1k−1pkk=det(A′)det(A′′)
det(A')=p_{11}p_{22}\dots p_{kk} \\
if \, det(A'')=p_{11}p_{22}\dots p_{k-1k-1}\\
p_{kk}=\frac{det(A')}{det(A'')}
det(A′)=p11p22…pkkifdet(A′′)=p11p22…pk−1k−1pkk=det(A′′)det(A′)
The big Formula
本文为节选,完整内容地址:https://www.face2ai.com/Math-Linear-Algebra-Chapter-5-2转载请标明出处
【线性代数】5-2:置换和余因子(Permutations and Cofactors)的更多相关文章
- Pascal Hexagrammum Mysticum 的深度探索
PASCAL . Hexagrammum Mysticum . (六角迷魂图) . 的深度探索 . 英中对比.英文蓝色,译文黑色,译者补充说明用紫红色 (已校完,但尚未定稿,想再整理并补充内容 ...
- POJ2369 Permutations(置换的周期)
链接:http://poj.org/problem?id=2369 Permutations Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- Codeforces 987E Petr and Permutations(数组的置换与复原 、结论)
题目连接: Petr and Permutations 题意:给出一个1到n的序列,Petr打乱了3n次,Um_nik打乱了7n+1次,现在给出被打乱后的序列,求是谁打乱的. 题解:因为给出了一个3* ...
- 【UVA 11077】 Find the Permutations (置换+第一类斯特林数)
Find the Permutations Sorting is one of the most used operations in real life, where Computer Scienc ...
- UVA - 11077 Find the Permutations (置换)
Sorting is one of the most usedoperations in real life, where Computer Science comes into act. It is ...
- UVa 11077 Find the Permutations(置换+递推)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35431 [思路] 置换+递推 将一个排列看作一个置换,分解为k个循 ...
- poj 2369 Permutations 置换
题目链接 给一个数列, 求这个数列置换成1, 2, 3....n需要多少次. 就是里面所有小的置换的长度的lcm. #include <iostream> #include <vec ...
- poj 2369 Permutations (置换入门)
题意:给你一堆无序的数列p,求k,使得p^k=p 思路:利用置换的性质,先找出所有的循环,然后循环中元素的个数的lcm就是答案 代码: #include <cstdio> #include ...
- 【CF736D】Permutations 线性代数+高斯消元
[CF736D]Permutations 题意:有一个未知长度为n的排列和m个条件,第i个条件$(a_i,b_i)$表示第$a_i$个位置上的数可以为$b_i$.保证最终合法的排列的个数是奇数.现在有 ...
随机推荐
- BZOJ2555 SubString(后缀自动机+LCT)
询问串放在SAM上不跳fail跑到的节点的|right|即为答案.用LCT维护parent树即可.可以直接维护子树信息,也可以转化为路径加.注意强制在线所使用的mask是作为参数传进去的. #incl ...
- Neo4j基本使用及导入三元组
下载和安装Neo4j 安装Java JDK 下载Neo4j安装文件 创建系统环境变量 Neo4j配置 配置文档存储在conf目录下,Neo4j通过配置文件neo4j.conf控制服务器的工作.默认情况 ...
- Vue子父组件方法互调
讲干货,不啰嗦,大家在做vue开发过程中经常遇到父组件需要调用子组件方法或者子组件需要调用父组件的方法的情况,现做一下总结,希望对大家有所帮助. 父组件调用子组件方法: 1.设置子组件的ref,父组件 ...
- Ubuntu输入密码后重新返回登陆界面
Xserver启动时,需要读取文件~/.Xauthority.由于权限不够,导致登录失败 解决办法 ctrl+alt+F1组合键进入终端,修改文件权限 # ls -l .Xauthority -rw- ...
- dfs · leetcode-22.产生括号组?
题面 Given n pairs of parentheses, write a function to generate all combinations of well-formed parent ...
- Java基础加强-泛型
/*泛型*/ (泛型是给编译器看的) 泛型是提供给 /*javac编译器使用的*/,可以限定集合中的输入类型,让编译器挡住源程序中的非法输入,编译器编译带类型带类型说明的集合时,会去掉 "类 ...
- Sliverlight/WPF 样式使用方法
1,UserControl 页面级样式: UserControl.Resources style setter Property value. TargetType为应用的类型 <UserCon ...
- python之新的开始
Day 1-Morning 终于开通了新的博客(等待审核的过程用着备忘录敲...)~感谢几位大佬们愿意带我一起学习 大家一起加油!(苟富贵,勿相忘!/doge 哈哈哈) 初学python,以下 ...
- php+redis一步一步测试秒杀
1.普通的秒杀查库减库存: <?php /** 100个用户同时访问100次会出现超卖 **/ //连接数据库 $dsn = "mysql:host=localhost;dbname= ...
- rsync & sersync 实时同步
1.根据之前一篇关于rsync的随笔部署好rsync服务后,可以开始inotify的部署 2.sersync的部署 ①.部署服务(安装和配置过程) #Master 部署Sersync服务 mkdir ...