论文地址:http://arxiv.org/abs/1811.11168

作者:pprp

时间:2019年5月11日

0. 摘要

DCNv1引入了可变形卷积,能更好的适应目标的几何变换。但是v1可视化结果显示其感受野对应位置超出了目标范围,导致特征不受图像内容影响(理想情况是所有的对应位置分布在目标范围以内)。

为了解决该问题:提出v2, 主要有

  1. 扩展可变形卷积,增强建模能力
  2. 提出了特征模拟方案指导网络培训:feature mimicking scheme

结果:性能显著提升,目标检测和分割效果领先。

1. 简介

Geometric variations due to scale, pose, viewpoint and part deformation present a major challenge in object recognition and detection.

目标检测一个主要挑战:尺度姿势视角部件变形引起的几何变化

v1 引入两个模块:

  • Deformable Convolution : 可变形卷积

    • 通过相对普通卷积基础上添加的偏移解决
  • Deformable RoI pooling : 可变形 RoI pooling
    • 在RoI pooling 中的bin学习偏移

为了理解可变形卷积,进行了可视化操作:

  • samples for an activation unit tend to cluster around the object on which it lies.

  • 激活单元样本点聚集在目标附近

  • 但是覆盖范围不够精确,超出the area of interest

由此提出DCNv2, 具有增强建模的能力,可用于学习可变形卷积

with enhanced modeling power for learning deformable convolutions.

添加了两种互补的模式:

  • 更广泛应用可变形卷积,在更多层上使用可变形卷积
  • 在原有基础上不仅加上偏移(offset),而且加上幅值(amplitude)的控制

为了充分利用可变形卷积提取的信息,吸取知识蒸馏的手段,进行培训。

  • 教师网络:R-CNN, 针对裁剪内容进行分类的一个网络,防止学习不在目标范围以外的内容
  • 学生网络:Faster R-CNN

2. 可变形卷积行为分析

2.1 空间支持可视化

可视化三个内容:

  1. 有效感受野 : 可视化感受野
  2. 有效采样位置: 对采样点求梯度,然后可视化
  3. 误差界限显著性区域 : 参考显著性分析理论,进行可视化

2.2 可变形网络空间支持

Faster R-CNN中Conv1-Conv4使用在Head中的,Conv5使用在Classification network上

ResNet-50 Conv5里边的3$\times​$3的卷积层都使用可变形卷积替换。Aligned RoI pooling 由 Deformable RoI Pooling取代,当offset学习率设置为0,那么Deformable RoI Pooling就退化为Aligned RoI Pooling。 ps: 这是V1中的操作。

从中观察到:

  1. 常规卷积可以一定程度上模拟几何变化,通过网络权重做到的
  2. 可变形卷积模拟几何变化能力显著提升,但是不够精确。

3. 更多可变形卷积层

v2 中进行改进的部分主要有三点

3.1 使用更多的可变形卷积

在Conv3, Conv4, Conv5中所有的3$\times​$3的卷积层全部被替换掉。对于pascal voc简单数据集,堆叠三层以上就会饱和。

3.2 在DCNv1基础(添加offset)上添加幅值参数

回顾一下DCNv1:

R 是相当于3$\times$3的kernel, \(p_0\)是当前中心点,\(p_n\)枚举每一个点。

可见,在普通卷积基础上,offset \(\Delta p_n​\)是主要改进点。

那DCNv2主要改了哪些地方?

在v1基础上,添加了\(\Delta m_k\), 一个控制幅值变化的量。

ROI pooling是如何改进的?

先看Faster R-CNN中的ROI Pooling:

然后先看DCNv1的Deformable RoI Pooling

主要是添加了offset fields \(\Delta p_{ij}\) 来控制偏移部分。

DCNv2的Deformable RoI Pooling也是将幅值引入,如下图:

类似的也添加了幅值变量,在训练的过程中进行学习。

3.3 R-CNN Feature Mimicking

采用了类似知识蒸馏的方法,用一个R-CNN分类网络作为teacher network 帮助Faster R-CNN更好收敛到目标区域内。

得到ROI之后,在原图中抠出这个ROI,resize到224x224,再送到一个RCNN中进行分类,这个RCNN只分类,不回归。然后,主网络fc2的特征去模仿RCNN fc2的特征,实际上就是两者算一个余弦相似度,1减去相似度作为loss即可

代码

GitHub几个源码

  1. <https://github.com/msracver/Deformable-ConvNets> 官方提供的版本,有DeepLab, Faster R-CNN, FPN, R-FCN等。源码使用的是mxnet。

  2. https://github.com/open-mmlab/mmdetection 集成了可变形卷积,源码使用的是pytorch。

  3. https://github.com/ChunhuanLin/deform_conv_pytorch 测试deform_conv_V1的准确度的demo.py,源码使用的是pytorch。
  4. https://github.com/4uiiurz1/pytorch-deform-conv-v2一个简单版本的DCNv2 ,源码使用的是pytorch
  5. https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 Pytorch 1.0 最新的完整的DCNv2

参考文献

https://blog.csdn.net/u013841196/article/details/80713314

http://arxiv.org/abs/1811.11168

https://www.cnblogs.com/jiujing23333/p/10059612.html

https://www.jianshu.com/p/23264e17d860

论文阅读:Deformable ConvNets v2的更多相关文章

  1. 论文阅读笔记四十:Deformable ConvNets v2: More Deformable, Better Results(CVPR2018)

    论文源址:https://arxiv.org/abs/1811.11168 摘要 可变形卷积的一个亮点是对于不同几何变化的物体具有适应性.但也存在一些问题,虽然相比传统的卷积网络,其神经网络的空间形状 ...

  2. 论文笔记:Deformable ConvNets v2: More Deformable, Better Results

    概要 MSRA在目标检测方向Beyond Regular Grid的方向上越走越远,又一篇大作推出,相比前作DCN v1在COCO上直接涨了超过5个点,简直不要太疯狂.文章的主要内容可大致归纳如下: ...

  3. 论文阅读笔记三十八:Deformable Convolutional Networks(ECCV2017)

    论文源址:https://arxiv.org/abs/1703.06211 开源项目:https://github.com/msracver/Deformable-ConvNets 摘要 卷积神经网络 ...

  4. Deformable ConvNets

    Deformable ConvNets 论文 Deformable Convolutional Networks(arXiv:1703.06211) CNN受限于空间结构,具有较差的旋转不变性,较弱的 ...

  5. YOLO 论文阅读

    YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YO ...

  6. BERT 论文阅读笔记

    BERT 论文阅读 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 由 @快刀切草莓君 ...

  7. Action4D:人群和杂物中的在线动作识别:CVPR209论文阅读

    Action4D:人群和杂物中的在线动作识别:CVPR209论文阅读 Action4D: Online Action Recognition in the Crowd and Clutter 论文链接 ...

  8. 论文阅读(Xiang Bai——【PAMI2017】An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition)

    白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Seq ...

  9. BITED数学建模七日谈之三:怎样进行论文阅读

    前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进 ...

随机推荐

  1. 转Python 爬虫入门实战

    转自:https://www.cnblogs.com/babycomeon/p/11651888.html

  2. Spring Boot系列之-profile

    Spring Boot profile用于分离不同环境的参数配置,通过spring.profile.active参数设置使用指定的profile. 在Spring Boot中应用程序配置可以使用2种格 ...

  3. 06点睛Spring4.1-Bean的初始化和销毁

    6.1 Initialization和Destruction spring对bean初始化的时候和销毁时候进行某些操作提供了支持 利用@Bean的initMethod和destroyMethod(和x ...

  4. Django:使用模态框新增数据,成功后提示“提交成功”,并刷新表格bootstrap-table数据

    废话不说先看图:  代码实现: 前台代码: {% load staticfiles %} <!DOCTYPE html> <html lang="en"> ...

  5. java多线程实现多客户端socket通信

    一.服务端 package com.czhappy.hello.socket; import java.io.IOException; import java.net.InetAddress; imp ...

  6. 特征抽取: sklearn.feature_extraction.DictVectorizer

    sklearn.featture_extraction.DictVectorizer: 将特征与值的映射字典组成的列表转换成向量. DictVectorizer通过使用scikit-learn的est ...

  7. 软件素材--c/c++干掉代码的通用方法

    while(1) { sleep(200); } #endif

  8. LeetCode 100. 相同的树(Same Tree) 2

    100. 相同的树 100. Same Tree 题目描述 给定两个二叉树,编写一个函数来检验它们是否相同. 如果两个树在结构上相同,并且节点具有相同的值,则认为它们是相同的. 每日一算法2019/5 ...

  9. Python17之函数、类、模块、包、库

    一.函数 一个拥有名称.参数和返回值的代码块. 需要主动调用,否则不会执行,可以通过参数和返回值与其它程序进行交互 二.类 用来描述具有相同的属性和方法的对象集合.它定义了该集合中每个对象所共有的属性 ...

  10. 数据结构-单链表-类定义2-C++

    上一次的C++链表实现两个单链表的连接不太理想,此次听了一些视频课,自己补了个尾插法,很好的实现了两个链表的连接,当然了,我也是刚接触,可能是C++的一些语法还不太清楚,不过硬是花了一些时间尽量在数据 ...