hive优化方式总结
1. 多表join优化代码结构:
select .. from JOINTABLES (A,B,C) WITH KEYS (A.key, B.key, C.key) where ....
关联条件相同多表join会优化成一个job
2. LeftSemi-Join是可以高效实现IN/EXISTS子查询的语义
SELECT a.key,a.value FROM a WHERE a.key in (SELECT b.key FROM b);
(1)未实现Left Semi-Join之前,Hive实现上述语义的语句是:
SELECT t1.key, t1.valueFROM a t1
left outer join (SELECT distinctkey from b) t2 on t1.id = t2.id
where t2.id is not null;
(2)可被替换为Left Semi-Join如下:
SELECT a.key, a.valFROM a LEFT SEMI JOIN b on (a.key = b.key)
这一实现减少至少1次MR过程,注意Left Semi-Join的Join条件必须是等值。
3. 预排序减少map join和group by扫描数据HIVE-1194
(1)重要报表预排序,打开hive.enforce.sorting选项即可
(2)如果MapJoin中的表都是有序的,这一特性使得Join操作无需扫描整个表,这将大大加速Join操作。可通过
hive.optimize.bucketmapjoin.sortedmerge=true开启这个功能,获得高的性能提升。
set hive.mapjoin.cache.numrows=10000000;
set hive.mapjoin.size.key=100000;
Insert overwrite table pv_users
Select /*+MAPJOIN(pv)*/ pv.pageid,u.age
from page_view pv
join user u on (pv.userid=u.userid;
(3)Sorted Group byHIVE-931
对已排序的字段做Group by可以不再额外提交一次MR过程。这种情况下可以提高执行效率。
4. 次性pv uv计算框架
(1)多个mr任务批量提交
hive.exec.parallel[=false]
hive.exec.parallel.thread.number[=8]
(2) 一次性计算框架,结合multi group by
如果少量数据多个union会优化成一个job;
反之计算量过大可以开启批量mr任务提交减少计算压力;
利用两次group by 解决count distinct 数据倾斜问题
Set hive.exec.parallel=true;
Set hive.exec.parallel.thread.number=2;
From(
Select
Yw_type,
Sum(case when type=’pv’ then ct end) as pv,
Sum(case when type=’pv’ then 1 end) as uv,
Sum(case when type=’click’ then ct end) as ipv,
Sum(case when type=’click’ then 1 end) as ipv_uv
from (
select
yw_type,log_type,uid,count(1) as ct
from (
select ‘total’ yw_type,‘pv’ log_type,uid from pv_log
union all
select ‘cat’ yw_type,‘click’ log_type,uid from click_log
) t group by yw_type,log_type
) t group by yw_type
) t
Insert overwrite table tmp_1
Select pv,uv,ipv,ipv_uv
Where yw_type=’total’ Insert overwrite table tmp_2
Select pv,uv,ipv,ipv_uv
Where yw_type=’cat’;
5. 控制hive中的map和reduce数
(1)合并小文件
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=
org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
hive.input.format=……表示合并小文件。大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),进行合并,最终生成了74个块
(2)耗时任务增大map数
setmapred.reduce.tasks=10;
6. 利用随机数减少数据倾斜
大表之间join容易因为空值产生数据倾斜
select
a.uid
from big_table_a a
left outer join big_table_b b
on b.uid = case when a.uid is null or length(a.uid)=0
then concat('rd_sid',rand()) else a.uid end;
hive优化方式总结的更多相关文章
- hive join的三种优化方式
原网址:https://blog.csdn.net/liyaohhh/article/details/50697519 hive在实际的应用过程中,大部份分情况都会涉及到不同的表格的连接, 例如在进行 ...
- hive优化之——控制hive任务中的map数和reduce数
一. 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文 ...
- 一起学Hive——总结常用的Hive优化技巧
今天总结本人在使用Hive过程中的一些优化技巧,希望给大家带来帮助.Hive优化最体现程序员的技术能力,面试官在面试时最喜欢问的就是Hive的优化技巧. 技巧1.控制reducer数量 下面的内容是我 ...
- 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...
- 大数据开发实战:Hive优化实战1-数据倾斜及join无关的优化
Hive SQL的各种优化方法基本 都和数据倾斜密切相关. Hive的优化分为join相关的优化和join无关的优化,从项目的实际来说,join相关的优化占了Hive优化的大部分内容,而join相关的 ...
- Apache Hive 存储方式、压缩格式
简介: Apache hive 存储方式跟压缩格式! 1.Text File hive> create external table tab_textfile ( host string com ...
- hive 优化 (转)
Hive优化 Hive优化目标 在有限的资源下,执行效率更高 常见问题 数据倾斜 map数设置 reduce数设置 其他 Hive执行 HQL --> Job --> Map/Reduce ...
- Hive(六)hive执行过程实例分析与hive优化策略
一.Hive 执行过程实例分析 1.join 对于 join 操作:SELECT pv.pageid, u.age FROM page_view pv JOIN user u ON (pv.useri ...
- hive学习(八)hive优化
Hive 优化 1.核心思想: 把Hive SQL 当做Mapreduce程序去优化 以下SQL不会转为Mapreduce来执行 select仅查询本表字段 where仅对本表字段做条件过滤 Ex ...
随机推荐
- XML中不能识别&符号, 需要转义吗?
“&”在XML中是具有特殊含义的,是转义字符的前缀,如果要想用这个字符就需要转义.遇到“&”就替换成“&”就好了; xml所有转义符 和 & & 大于 ...
- Excel输入公式后只显示公式却不计算如何解决?
在使用Excel函数公式的时候,您是否碰到过输入公式,按下Enter键之后,单元格仍只显示公式,而不显示计算结果. 工具/原料 Excel 教程以Excel2013为例 方法/步骤 教 ...
- 20190507-学习dubbo有感于梁飞
“作为一名程序员,BAT肯定是大多数人都想进的,仿佛是一种情愫,就像学生时代的我们对清华北大的向往感觉一样.Dubbo团队中,其中主要负责人就是梁飞了,梁飞的经历还是蛮励志的.梁飞,花名虚极, 200 ...
- Java list 转树tree的三种写法
- TensorFlow实现一个简单线性回归的例子
__author__ = "WSX" import tensorflow as tf import numpy as np import matplotlib.pyplot as ...
- Rust 优劣势: v.s. C++ / v.s. Go(持续更新)
Rust 发展速度比 C++ 强很多.如果去翻 open-std 的故纸堆,会发现 C++ 这边有很多人(包括标准委员会的人)提了有用的提案,但后来大多不了了之或经历了非常长的时间才进入标准. > ...
- the specified service is marked as deletion,can not find the file specified
使用命令注册windows service sc create CCGSQueueService binpath= "D:\DKX4003\services\xxx.xx.xx\xxx.ex ...
- Tomcat中的Host和Engine级别的servlet容器
这边文章主要介绍的是Host容器 和 Engine容器.如果你想在同一个Tomcat上部署运行多个Context容器的话,你就需要使用Host容器,从理论上来讲,如果你的Tomcat只想要部署一个Co ...
- Redis基本数据
Redis Redis是一个速度非常快的非关系数据库(NoSql),它可以存储键(key)与五种不同的值(value)之间的映射.可以将存储的内存的键值对数据持久化到硬盘. Redis 数据结构 Re ...
- js修改当前页面地址栏参数
利用HTML5 history新特性replaceState方法可以修改当前页面地址栏参数,示例代码: //选择日期后改变地址栏 var urlSearch = location.href; var ...