Contest Info


Practice Link

Solved A B C D E F G H I J K L M
8/13 O - O - O O - O - O - O O
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • - 没有尝试

Solutions


A. Cat

题意:

每次询问给出\(L, R, S\),要求找一个最长的连续区间\(l, r\),满足\(l \oplus (l + 1) \oplus, \cdots, \oplus r <= S\)。

思路:

考虑\(4k \oplus (4k + 1) \oplus (4k + 2) \oplus (4k +3) = 0\)

那么我们枚举一下头,枚举一下尾,暴力判断一下即可。

代码:

#include <bits/stdc++.h>

using namespace std;

using ll = long long;

const ll INF = 0x3f3f3f3f3f3f3f3f;

ll L, R, S;

ll gao(ll l, ll r) {
if (l > r) return INF;
ll res = 0;
if (r - l + 1 <= 10) {
for (ll i = l; i <= r; ++i) {
res ^= i;
}
} else {
ll ql = l, qr = r;
while (ql % 4 != 0) {
res ^= ql;
ql++;
}
while (qr % 4 != 3) {
res ^= qr;
qr--;
}
}
return res;
} int main() {
int T;
scanf("%d", &T);
while (T--) {
scanf("%lld %lld %lld", &L, &R, &S);
ll res = -1;
for (int i = 0; i <= 4; ++i) {
for (int j = 0; j <= 4; ++j) {
ll tmp = gao(L + i, R - j);
if (tmp <= S) res = max(res, (R - j) - (L + i) + 1);
}
}
printf("%lld\n", res);
}
return 0;
}

B. Cats line up

题意:

给出\(n\)个数,问有多少个排列使得任意相邻两个数的差距小于等于\(K(1 \leq K \leq 3)\)

C. < 3 numbers

题意:

令\(x\)为区间\([L, R]\)内素数个数,每次询问给出\([L, R]\),判断下式是否成立:

\[\begin{eqnarray*}
\frac{x}{R - L + 1} < \frac{1}{3}
\end{eqnarray*}
\]

思路:

考虑素数密度,大区间直接'Yes'

小区间暴力判断

代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int L, R, pri[N], check[N];
void sieve() {
memset(check, 0, sizeof check);
for (int i = 2; i < N; ++i) {
if (!check[i]) {
pri[++*pri] = i;
}
for (int j = 1; j <= *pri; ++j) {
if (1ll * i * pri[j] >= N) break;
check[i * pri[j]] = 1;
if (i % pri[j] == 0) break;
}
}
} bool prime(int x) {
if (x < N) return !check[x];
for (int i = 2; 1ll * i * i <= x; ++i) {
if (x % i == 0)
return false;
}
return true;
} bool ok(int l, int r) {
int tot = r - l + 1;
int p = 0;
for (int i = l; i <= r; ++i) {
if (prime(i)) {
++p;
}
}
return p * 3 < tot;
} int main() {
sieve();
int _T; scanf("%d", &_T);
while (_T--) {
scanf("%d%d", &L, &R);
if (R - L + 1 > 60) {
puts("Yes");
} else {
puts(ok(L, R) ? "Yes" : "No");
}
}
return 0;
}

E. Multiply

题意:

给出\(n\)个数\(a_i\),令\(Z = a_1! \times a_2! \times \cdots \times a_n!\)

现在给出\(X, Y\),令\(b_i = Z \times X^i\),它想要一个最大的\(i\),使得\(b_i \;|\; Y!\)

思路:

考虑分解\(X\)得到它的所有素因子及幂次。

然后找出其每个因子在\(\frac{Y!}{Z}\)中还剩多少个。

然后贪心拼\(X\)就可以了

代码:

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define dbg(x...) do { cout << "\033[32;1m" << #x << " -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg, const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 2e5 + 10, INF = 0x3f3f3f3f;
int n; ll x, y, a[N], f[N];
mt19937 rd(time(0));
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; }
//ll mul(ll a, ll b, ll p) {
// return (a * b - (ll)(a / (long double)p * b + 1e-3) * p + p) % p;
//}
ll mul(ll a, ll b, ll p) {
return (__int128)a * b % p;
}
ll qpow(ll base, ll n, ll p) {
ll res = 1;
base %= p;
while (n) {
if (n & 1) {
res = mul(res, base, p);
}
base = mul(base, base, p);
n >>= 1;
}
return res;
} struct Mill {
ll n, fac[22000][2], bk[22000]; int tot;
const int C = 2307;
const int S = 8;
bool check(ll a, ll n) {
ll m = n - 1, x, y = 0;
int j = 0;
while (!(m & 1)) {
m >>= 1;
++j;
}
x = qpow(a, m, n);
for (int i = 1; i <= j; x = y, ++i) {
y = mul(x, x, n);
if (y == 1 && x != 1 && x != n - 1) {
return 1;
}
}
return y != 1;
}
bool miller_rabin(ll n) {
if (n < 2) {
return 0;
} else if (n == 2) {
return 1;
} else if (!(n & 1)) {
return 0;
}
for (int i = 0; i < S; ++i) {
if (check(rd() % (n - 1) + 1, n)) {
return 0;
}
}
return 1;
}
ll pollard_rho(ll n, int c) {
ll i = 1, k = 2, x = rd() % n, y = x, d;
while (1) {
++i; x = (mul(x, x, n) + c) % n;
d = gcd(y - x, n);
if (d > 1 && d < n) {
return d;
}
if (y == x) {
return n;
}
if (i == k) {
y = x;
k <<= 1;
}
}
}
void findfac(ll n, int c) {
if (n == 1) {
return;
}
if (miller_rabin(n)) {
bk[++*bk] = n;
return;
}
ll m = n;
while (m == n) {
m = pollard_rho(n, c--);
}
findfac(m, c);
findfac(n / m, c);
}
void gao(ll _n) {
n = _n; *bk = 0;
findfac(n, C);
sort(bk + 1, bk + 1 + *bk);
fac[1][0] = bk[1];
fac[1][1] = 1;
tot = 1;
for (int i = 2; i <= *bk; ++i) {
if (bk[i] == bk[i - 1]) {
++fac[tot][1];
} else {
++tot;
fac[tot][0] = bk[i];
fac[tot][1] = 1;
}
}
}
}mill; int main() {
int _T; cin >> _T;
while (_T--) {
scanf("%d%lld%lld", &n, &x, &y);
for (int i = 1; i <= n; ++i) scanf("%lld", a + i);
mill.gao(x);
int tot = mill.tot;
for (int i = 1; i <= tot; ++i) f[i] = 0;
ll res = 8e18;
for (int i = 1; i <= tot; ++i) {
// dbg(mill.fac[i][0], mill.fac[i][1]);
ll now = 1;
for (int j = 1; now <= y / mill.fac[i][0]; ++j) {
now *= mill.fac[i][0];
f[i] += (y / now);
for (int o = 1; o <= n; ++o) {
f[i] -= (a[o] / now);
}
}
res = min(1ll * res, f[i] / mill.fac[i][1]);
}
printf("%lld\n", res);
}
return 0;
}

F. The Answer to the Ultimate Question of Life, The Universe, and Everything.

题意:

每次询问给出\(x(0 \leq x \leq 200)\),需要找出\(a, b, c(|a|, |b|, |c| \leq 5000)\)满足\(a^3 + b^3 + c^3 = x\)

思路:

\(x\)只有201个,可以暴力打表。

打表的时候可以枚举两维,第三维直接算。

打表代码:

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
ll ok(ll need) {
ll l = -5000, r = 5000, res = -12345678;
while (r - l >= 0) {
ll mid = (l + r) >> 1;
ll tmp = mid * mid * mid;
if (tmp == need) {
return mid;
}
if (tmp > need) {
r = mid - 1;
} else {
l = mid + 1;
}
}
return res;
} bool gao(int x) {
int limit = 5000;
for (ll a = -limit; a <= limit; ++a) {
for (ll b = -limit; b <= limit; ++b) {
ll need = 1ll * x - a * a * a - b * b * b;
ll c = ok(need);
if (abs(c) <= 5000) {
cout << a << " " << b << " " << c << endl;
return true;
}
}
}
return false;
} int main() {
int cnt = 0;
int Y = -12345678;
for (int i = 0; i <= 200; ++i) {
if (!gao(i)) {
cout << Y << " " << Y << " " << Y << endl;
}
}
cout << cnt << " " << cnt << " " << cnt << endl;
return 0;
}

H. Yuuki and a problem

题意:

给出一个序列\(a_i\),支持两个操作:

  • 将\(a_x\)改成\(y\)
  • 询问最小的不能被\(a_l \cdots a_r\)里面的数表示出来的正整数

思路:

考虑没有修改操作怎么做:

主席树权值\(i\)表示\(i\)这个数的和.

然后考虑每次递增上去,假设已经能够表示出\([1, x]\)范围的数,那么我们可以将\([1, x + 1]\)范围内还未加入的数加进去。

这个可以在主席树上查。

并且这个加入次数跟斐波那契列类似,不会很多。

那么有修改,就敲个动态主席树

注意不要把vector当参数传下去,空间要给够

代码:

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define dbg(x...) do { cout << "\033[32;1m" << #x << " -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg, const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 2e5 + 10;
int n, m, q, a[N], L[510][510], R[510][510], cl, cr;
inline int lowbit(int x) { return x & -x; }
struct SEG {
struct node {
int ls, rs;
ll sum;
void init() { ls = rs = sum = 0; }
}t[N * 80];
int rt[N], tot;
ll res;
int newnode() {
++tot;
t[tot].init();
return tot;
}
void init() { memset(rt, 0, sizeof rt); tot = 0; }
void update(int &rt, int l, int r, int pos, int v) {
if (!rt) rt = newnode();
t[rt].sum += v;
if (l == r) return;
int mid = (l + r) >> 1;
if (pos <= mid) update(t[rt].ls, l, mid, pos, v);
else update(t[rt].rs, mid + 1, r, pos, v);
}
void update(int x, int pos, int v) {
for (; x <= n; x += lowbit(x)) {
update(rt[x], 1, m, pos, v);
}
}
void query(int dep, int l, int r, int ql, int qr) {
if (ql > qr) return;
if (l >= ql && r <= qr) {
for (int i = 1; i <= cl; ++i) res -= t[L[dep][i]].sum;
for (int i = 1; i <= cr; ++i) res += t[R[dep][i]].sum;
return;
}
int mid = (l + r) >> 1;
if (ql <= mid) {
for (int i = 1; i <= cl; ++i) L[dep + 1][i] = t[L[dep][i]].ls;
for (int i = 1; i <= cr; ++i) R[dep + 1][i] = t[R[dep][i]].ls;
query(dep + 1, l, mid, ql, qr);
}
if (qr > mid) {
for (int i = 1; i <= cl; ++i) L[dep + 1][i] = t[L[dep][i]].rs;
for (int i = 1; i <= cr; ++i) R[dep + 1][i] = t[R[dep][i]].rs;
query(dep + 1, mid + 1, r, ql, qr);
}
}
}seg; int main() {
m = 2e5;
while (scanf("%d%d", &n, &q) != EOF) {
for (int i = 1; i <= n; ++i) scanf("%d", a + i);
seg.init();
for (int i = 1; i <= n; ++i) {
seg.update(i, a[i], a[i]);
}
int op, x, y;
for (int i = 1; i <= q; ++i) {
scanf("%d%d%d", &op, &x, &y);
if (op == 1) {
seg.update(x, a[x], -a[x]);
a[x] = y;
seg.update(x, a[x], a[x]);
} else {
--x;
cl = cr = 0;
for (int j = x; j; j -= lowbit(j)) {
L[0][++cl] = seg.rt[j];
}
for (int j = y; j; j -= lowbit(j)) {
R[0][++cr] = seg.rt[j];
}
ll l = -1, r = 0;
while (1) {
seg.res = 0;
seg.query(0, 1, m, min(1ll * m + 1, l + 2), min(1ll * m, r + 1));
ll tot = seg.res;
// dbg(i, tot, l + 2, r + 1);
if (tot == 0) break;
l = r;
r += tot;
}
printf("%lld\n", r + 1);
}
}
}
return 0;
}

J. Loli, Yen-Jen, and a graph problem

题意:

给出一个完全图,要将这张图分成\(n - 1\)条路径,第\(i\)条路径的长度为\(i\),并且一条边只能存在于一条路径中。

代码:

#include <bits/stdc++.h>

using namespace std;
#define dbg(x...) do { cout << "\033[32;1m" << #x << " -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg, const Ts&... args) { cout << arg << " "; err(args...); } const int N = 1e3 + 10; int n;
int e[N][N];
int Max[N];
int now;
vector<vector<int> > vec; void fix(int x, int y) {
e[x][y] = e[y][x] = 1;
} int find(int x) {
while (e[Max[x]][x]) {
++Max[x];
}
return Max[x];
} void insert(int x) {
vec[now].push_back(x);
if ((int)vec[now].size() == now + 1) {
now--;
if (now % 2 == 0) vec[now].push_back(x);
}
} void gao(int x, int y) {
insert(x);
int ny = y + 1;
if (ny > n) return ;
insert(ny);
gao(x + 1, ny);
} int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
e[i][j] = (i == j ? 1 : 0);
}
Max[i] = 1;
}
vec.clear();
vec.resize(n + 1);
if (n & 1) {
for (int cas = n - 1; cas >= 1; --cas) {
vec[cas].push_back(n);
int sze = 1;
while (sze <= cas) {
int nxt = find(vec[cas].end()[-1]);
fix(vec[cas].end()[-1], nxt);
vec[cas].push_back(nxt);
sze++;
}
}
for (int i = 1; i < n; ++i) {
for (int j = 0, sze = vec[i].size(); j < sze; ++j) {
printf("%d%c", vec[i][j], " \n"[j == sze - 1]);
}
}
} else {
now = n - 1;
// insert(2);
// gao(1, 2);
for (int i = 2; i <= n; i += 2) {
insert(i);
gao(1, i);
}
for (int i = 1; i < n; ++i) {
for (int j = 0, sze = vec[i].size(); j < sze; ++j) {
printf("%d%c", vec[i][j], " \n"[j == sze - 1]);
}
}
}
}
return 0;
}

K. K-rectangle

题意:

给出\(n\)个点\((x_i, y_i)(x_i < x_{i + 1}, 0 < y_i)\)

现在你要找若干个矩形覆盖这些点,矩形的底边必须在\(x\)轴上,矩形之间不能有面积交,矩形的花费是\(h(w + k)\),\(h\)为高,\(w\)为宽,\(k\)为给定参数。

求最小花费。

L. Loli, Yen-Jen, and a cool problem

题意:

给出一个Trie,每次询问给出一个\(x_i, L_i\),问有多少个结点为起点向上跳\(L - 1\)步连成的长度为\(L\)的字符串和以\(x_i\)为起点连成的字符串相同

这里的字符在点上,不在边上

思路:

多加一个根节点,就能将点上的字符转化成边上的字符

然后Trie上建SAM,每次查找倍增跳深度最深的合法祖先,它的cnt就是答案

代码:

#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 10, ALP = 26, M = 20;
int n, q, trie_pos[N]; char s[N];
struct SAM {
struct node {
int maxlen, cnt, fa, nx[ALP];
void init() { maxlen = cnt = fa = 0; memset(nx, 0, sizeof nx); }
}t[N << 1];
int tot, c[N << 1], rk[N << 1], fa[N << 1][M];
vector <vector<int>> G;
int newnode() {
++tot;
t[tot].init();
return tot;
}
void init() {
tot = 0;
newnode();
}
int extend(int id, int lst, int cnt) {
int cur = newnode(), p;
t[cur].cnt = cnt;
t[cur].maxlen = t[lst].maxlen + 1;
for (p = lst; p && !t[p].nx[id]; p = t[p].fa) t[p].nx[id] = cur;
if (!p) {
t[cur].fa = 1;
} else {
int q = t[p].nx[id];
if (t[q].maxlen == t[p].maxlen + 1) {
t[cur].fa = q;
} else {
int clone = newnode();
t[clone] = t[q];
t[clone].cnt = 0;
t[clone].maxlen = t[p].maxlen + 1;
for (; p && t[p].nx[id] == q; p = t[p].fa) t[p].nx[id] = clone;
t[cur].fa = t[q].fa = clone;
}
}
return cur;
}
void dfs(int u) {
for (int i = 1; i < M; ++i)
fa[u][i] = fa[fa[u][i - 1]][i - 1];
for (auto &v : G[u]) {
fa[v][0] = u;
dfs(v);
t[u].cnt += t[v].cnt;
}
}
void build() {
memset(c, 0, sizeof c);
for (int i = 1; i <= tot; ++i) c[t[i].maxlen]++;
for (int i = 1; i <= tot; ++i) c[i] += c[i - 1];
// for (int i = 1; i <= tot; ++i) rk[c[t[i].maxlen]--] = i;
// for (int i = tot; i; --i) t[t[rk[i]].fa].cnt += t[rk[i]].cnt;
G.clear(); G.resize(tot + 1);
for (int i = 1; i <= tot; ++i) {
if (t[i].fa) {
G[t[i].fa].push_back(i);
}
}
fa[1][0] = 0;
dfs(1);
}
int query(int x, int len) {
for (int i = M - 1; i >= 0; --i) {
if (t[fa[x][i]].maxlen >= len) {
x = fa[x][i];
}
}
return t[x].cnt;
}
}sam; vector <vector<int>> G;
struct Trie {
struct node {
int nx[ALP], cnt, sam_pos;
void init() { memset(nx, 0, sizeof nx); cnt = 0; sam_pos = 0; }
}t[N];
int rt, tot;
int newnode() {
++tot;
t[tot].init();
return tot;
}
void init() { tot = 0; rt = newnode(); }
int add(int p, int ch) {
if (!t[p].nx[ch]) {
t[p].nx[ch] = newnode();
}
int now = t[p].nx[ch];
++t[now].cnt;
return now;
}
void dfs(int u) {
for (auto &v : G[u]) {
trie_pos[v] = add(trie_pos[u], s[v] - 'A');
dfs(v);
}
}
void bfs() {
queue <int> q;
q.push(1);
t[1].sam_pos = 1;
while (!q.empty()) {
int u = q.front(); q.pop();
for (int i = 0; i < ALP; ++i) {
if (!t[u].nx[i]) continue;
int now = t[u].nx[i];
t[now].sam_pos = sam.extend(i, t[u].sam_pos, t[now].cnt);
q.push(now);
}
}
}
}trie; int main() {
while (scanf("%d%d", &n, &q) != EOF) {
G.clear(); G.resize(n + 1);
scanf("%s", s + 1);
trie.init();
trie_pos[0] = 1;
trie_pos[1] = trie.add(trie_pos[0], s[1] - 'A');
for (int u = 2, v; u <= n; ++u) {
scanf("%d", &v);
G[v].push_back(u);
}
trie.dfs(1);
sam.init(); trie.bfs(); sam.build();
int x, len;
while (q--) {
scanf("%d%d", &x, &len);
printf("%d\n", sam.query(trie.t[trie_pos[x]].sam_pos, len));
}
}
return 0;
}

M. Kill the tree

题意:

给出一棵有根树,根节点为\(1\),定义\(d(u, v)\)为\(u\)到\(v\)简单路径的长度,\(c(w) = \sum_{v \in T} d(w, v)\),定义结点\(w\)为一棵树\(T\)的'critical point',当且仅当\(c(w) \leq min_{u \in T} c(u)\)

现在要对于每个\(i \in [1, n]\),要找出以\(i\)为根节点的子树中的'critical point'

思路:

猜想'critical point'就是重心。

问题转化成找重心。

我们考虑假设\(x\)的子树中的所有重心都找出来了:

  • 那么\(x\)子树的重心不可能在它的轻儿子的子树中,因为选\(x\)本身肯定更优
  • 并且\(x\)的重心不可能在它重儿子重心的子树中。
  • 只可能在其重儿子的重心到\(x\)的路径上

暴力判断一下即可,每个点只会被判断一次。

但是这里要求输出所有可能的点,考虑重心最多只有两个,并且是连着的,那么我们找到深度最大的一个,另一个如果存在的话,那么就是它父亲,判一下即可。

代码:

#include <bits/stdc++.h>
using namespace std;
#define dbg(x...) do { cout << "\033[32;1m" << #x << " -> "; err(x); } while (0)
void err() { cout << "\033[39;0m" << endl; }
template<class T, class... Ts> void err(const T& arg, const Ts&... args) { cout << arg << " "; err(args...); }
const int N = 2e5 + 10; int n;
vector<vector<int> >G;
int sze[N], fa[N], son[N], res[N]; void dfs(int u, int pre = 0) {
sze[u] = 1;
fa[u] = pre;
for (auto &v : G[u]) {
if (v == pre) continue;
dfs(v, u);
sze[u] += sze[v];
if (son[u] == -1 || sze[son[u]] < sze[v]) {
son[u] = v;
}
}
if (son[u] == -1) son[u] = u;
} void gao(int u) {
if (sze[u] == 1) {
res[u] = u;
return ;
}
for (auto &v : G[u]) {
if (v == fa[u]) continue;
gao(v);
}
int now = res[son[u]];
while (now != u) {
int tmp = max(sze[u] - sze[now], sze[son[now]]);
if (tmp <= sze[u] / 2) {
break;
}
now = fa[now];
}
// assert(max(sze[u] - sze[now], sze[son[now]]) <= sze[u] / 2);
res[u] = now;
} int main() {
while (scanf("%d", &n) != EOF) {
memset(son, -1, sizeof son);
G.clear();
G.resize(n + 1);
for (int i = 1, u, v; i < n; ++i) {
scanf("%d %d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(1);
gao(1);
for (int i = 1; i <= n; ++i) {
vector <int> vec;
int x = res[i], y = -1;
vec.push_back(x);
if (x != i) {
y = fa[x];
if (max(sze[i] - sze[y], sze[son[y]]) <= sze[i] / 2) {
vec.push_back(y);
}
}
if (vec.size() > 1 && vec[0] > vec[1]) swap(vec[0], vec[1]);
for (int j = 0, sze = vec.size(); j < sze; ++j)
printf("%d%c", vec[j], " \n"[j == sze - 1]);
}
}
return 0;
}

2019 ICPC Asia Xuzhou Regional的更多相关文章

  1. 2019 ICPC Asia Nanjing Regional

    2019 ICPC Asia Nanjing Regional A - Hard Problem 计蒜客 - 42395 若 n = 10,可以先取:6,7,8,9,10.然后随便从1,2,3,4,5 ...

  2. 2019 ICPC Asia Nanjing Regional K. Triangle

    题目:在直角坐标系中给定 p1,p2,p3构成三角形,给定p4可能在三角形边上也可能不在, 问能不能在三角形上找出p5,使得线段p4p5,平分三角形(p4必须在三角形上).不能则输出-1. 思路:四个 ...

  3. 2019 ICPC Asia Yinchuan Regional

    目录 Contest Info Solutions A. Girls Band Party B. So Easy D. Easy Problem E. XOR Tree F. Function! G. ...

  4. 2019 ICPC Asia Nanchang Regional C And and Pair 找规律/位运算/dp

    题意: 给定一个二进制表示的n,让你找满足如下要求的数对(i,j)的个数 $0 \leqslant j \leqslant i \leqslant n$ $ i & n = i $ $ i & ...

  5. 2019 ICPC Asia Nanchang Regional E Eating Plan 离散化+前缀和

    题意: 给你n个盘子,这n个盘子里面分别装着1!到n!重量的食物,对于每一个询问k,找出一个最短的区间,使得区间和 mod 998857459 大于或等于k 盘子数量 n<=1e5 询问次数 m ...

  6. The 2019 ICPC Asia Shanghai Regional Contest H Tree Partition k、Color Graph

    H题意: 给你一个n个节点n-1条无向边构成的树,每一个节点有一个权值wi,你需要把这棵树划分成k个子树,每一个子树的权值是这棵子树上所有节点权值之和. 你要输出这k棵子树的权值中那个最大的.你需要让 ...

  7. 2019 ICPC Asia Taipei-Hsinchu Regional Problem J Automatic Control Machine (DFS,bitset)

    题意:给你\(m\)个长度为\(n\)的二进制数,求最少选多少个使它们\(|\)运算后所有位置均为\(1\),如果不满足条件,则输出\(-1\). 题解:这题\(n\)的范围很大,所以我们先用\(st ...

  8. 2019 ICPC Asia Taipei-Hsinchu Regional Problem K Length of Bundle Rope (贪心,优先队列)

    题意:有\(n\)堆物品,每次可以将两堆捆成一堆,新堆长度等于两个之和,每次消耗两个堆长度之和的长度,求最小消耗使所有物品捆成一堆. 题解:贪心的话,每次选两个长度最小的来捆,这样的消耗一定是最小的, ...

  9. 2018-2019 ACM-ICPC, Asia Xuzhou Regional Contest- H. Rikka with A Long Colour Palette -思维+贪心

    2018-2019 ACM-ICPC, Asia Xuzhou Regional Contest- H. Rikka with A Long Colour Palette -思维+贪心 [Proble ...

随机推荐

  1. Python之推导式笔记

    观察下面的代码: list1 = [] for i in range(10): list1.append(i) print(list1) 作为一个Java出身的程序员,我一定会这么写代码去生成一个列表 ...

  2. net namespace实验

    Net namespace实验 在 Linux 中,网络名字空间可以被认为是隔离的拥有单独网络栈(网卡.路由转发表.iptables)的环境.网络名字空间经常用来隔离网络设备和服务,只有拥有同样网络名 ...

  3. gitlab私有环境搭建

    1. 环境准备 安装所需的依赖包 yum install curl openssh-server openssh-clients postfix cronieGitLab使用postfix发送邮件 s ...

  4. UOJ #7 NOI2014购票(点分治+cdq分治+斜率优化+动态规划)

    重写一遍很久以前写过的题. 考虑链上的问题.容易想到设f[i]为i到1的最少购票费用,转移有f[i]=min{f[j]+(dep[i]-dep[j])*p[i]+q[i]} (dep[i]-dep[j ...

  5. C# EF 加密连接数据库连接字符串

    不多说,直接上代码 public partial class Model1 : DbContext { private static string connStr = ""; pu ...

  6. 开发一个简单的工具,导出github仓库所有issue列表

    Jerry有一个github仓库,专门用来存放自己的知识管理,通过一条条的issue来记录具体的知识点: https://github.com/i042416/KnowlegeRepository/i ...

  7. 在pivotal cloud foundry上申请账号和部署应用

    Created by Wang, Jerry, last modified on Jul 04, 2016 URL: http://run.pivotal.io/ maintain your mobi ...

  8. py map reduce filter 总结

    array=[1,3,4,71,2] ret=[] for i in array: ret.append(i**2) print(ret) #如果我们有一万个列表,那么你只能把上面的逻辑定义成函数 d ...

  9. 20.Vue中获取DOM元素和组件

    1.获取DOM元素和组件:this.$refs

  10. Alpha版本第二周小结

               软工作业---Alpha版本第二周小结   姓名 学号 周前计划 每周实际工作记录 自我打分 yrz 1417 协助原型设计的完善,督促组员完成个人任务 原型优化设计未完成,但体 ...