title: 【概率论】5-6:正态分布(The Normal Distributions Part II)

categories:

- Mathematic

- Probability

keywords:

- The Normal Distributions

toc: true

date: 2018-03-29 15:02:03



Abstract: 本文介绍正态分布的数学性质

Keywords: The Normal Distributions

开篇废话

一共要写四篇,哪来那么多废话。

首先我们要从最基础的原始的正态分布的数学原理说起

Properties of Normal Distributions

Definition

到目前为止,我们还没看到正态分布长什么样。

Definition and p.d.f. A random X has the normal distribution with mean μ\muμ and variance σ2\sigma^2σ2 (−∞&lt;μ&lt;∞-\infty&lt;\mu&lt;\infty−∞<μ<∞ and σ&gt;0\sigma &gt; 0σ>0) if X has a contimuous distribution with the following p.d.f.

f(x∣μ,σ2)=1(2π)12σe−12((x−μ)σ)2for−∞&lt;x&lt;∞
f(x|\mu,\sigma^2)=\frac{1}{(2\pi)^{\frac{1}{2}}\sigma}e^{-\frac{1}{2}(\frac{(x-\mu)}{\sigma})^2}\text{for} -\infty&lt;x&lt;\infty
f(x∣μ,σ2)=(2π)21​σ1​e−21​(σ(x−μ)​)2for−∞<x<∞

定义对于我们来说就是个准确的命名过程。那么我们接下来要证明的是定义里说的对不对?

Theorem f(x∣μ,σ2)=1(2π)12σe−12((x−μ)σ)2for−∞&lt;x&lt;∞f(x|\mu,\sigma^2)=\frac{1}{(2\pi)^{\frac{1}{2}}\sigma}e^{-\frac{1}{2}(\frac{(x-\mu)}{\sigma})^2}\text{for} -\infty &lt; x&lt; \inftyf(x∣μ,σ2)=(2π)21​σ1​e−21​(σ(x−μ)​)2for−∞<x<∞ is a p.d.f.

思路:证明一个表达式是不是,p.d.f.,肯定要根据p.d.f.的定义,①不能出现负数,②积分结果是1。

首先观察函数,发现其不可能出现负数,所以性质1符合p.d.f.的性质

那么接下来是求积分,并确保是1,不是说不能积分么,这里怎么做呢?

首先我们令 y=x−μσy=\frac{x-\mu}{\sigma}y=σx−μ​ 那么

∫−∞∞f(x∣μ,σ2)dx=∫−∞∞1(2π)1/2e−12y2dywe shall now let:I=∫−∞∞e−12y2dy
\int^{\infty}_{-\infty}f(x|\mu,\sigma^2)dx=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}}e^{-\frac{1}{2}y^2}dy\\
\text{we shall now let:}\\
I=\int^{\infty}_{-\infty}e^{-\frac{1}{2}y^2}dy
∫−∞∞​f(x∣μ,σ2)dx=∫−∞∞​(2π)1/21​e−21​y2dywe shall now let:I=∫−∞∞​e−21​y2dy

所以我们只要证明 I=(2π)1/2I=(2\pi)^{1/2}I=(2π)1/2 就算是得到结论了,但是怎么证明呢?我们用用1的特点吧,1和1相乘还是1所以我们让两个积分相乘,我们来到了二重积分的世界解决这个问题:

I2=I×I=∫−∞∞e−12y2dy⋅∫−∞∞e−12z2dz=∫−∞∞∫−∞∞e−12(y2+z2)dydzto the polar coordinates r and θ:I2=∫02π∫0∞e−12(r2)rdrdθsubstitute v=r2/2∫0∞e−vdv=1
\begin {aligned}
I^2&amp;=I\times I=\int^{\infty}_{-\infty}e^{-\frac{1}{2}y^2}dy \cdot \int^{\infty}_{-\infty}e^{-\frac{1}{2}z^2}dz\\
&amp;=\int^{\infty}_{-\infty} \int^{\infty}_{-\infty}e^{-\frac{1}{2}(y^2+z^2)}dydz\\
\text{to the polar coordinates } r \text{ and } \theta :\\
I^2&amp;=\int^{2\pi}_{0} \int^{\infty}_{0}e^{-\frac{1}{2}(r^2)}rdrd\theta \\
\text{substitute }v=r^2/2\\
&amp;\int^{\infty}_{0}e^{-v}dv=1
\end{aligned}
I2to the polar coordinates r and θ:I2substitute v=r2/2​=I×I=∫−∞∞​e−21​y2dy⋅∫−∞∞​e−21​z2dz=∫−∞∞​∫−∞∞​e−21​(y2+z2)dydz=∫02π​∫0∞​e−21​(r2)rdrdθ∫0∞​e−vdv=1​

证毕。

也就证明了两个这个积分相乘的结果是1,但是我们并没有求出他的反函数。

m.g.f.

m.g.f. 一旦得到相应的均值和方差就非常简单了。

Theorem Moment Generating Function.The m.g.f. of the distribution with p.d.f. given by upside is

ψ(t)=eμt+12σ2t2 for −∞&lt;t&lt;∞
\begin{aligned}
\psi(t)&amp;=e^{\mu t+\frac{1}{2}\sigma^2t^2}&amp;\text{ for }-\infty&lt;t&lt;\infty
\end{aligned}
ψ(t)​=eμt+21​σ2t2​ for −∞<t<∞​

证明上面定理的唯一办法就是我们求一下正态分布定义中那个p.d.f.的m.g.f.看结果是否一致。

ψ(t)=E(etX)=∫−∞∞1(2π)1/2etx−(x−μ)22σ2dxsquare inside the brackets:tx−(x−μ)22σ2=μt+12σ2t2−[x−(μ+σ2t)]22σ2Therefore:ψ(t)=Ceμt+12σ2t2where: C=∫−∞∞1(2π)1/2σe−[x−(μ+σ2t)]22σ2dx
\begin{aligned}
\psi(t)&amp;=E(e^{tX})=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}}e^{tx-\frac{(x-\mu)^2}{2\sigma^2}}dx\\
\text{square inside the brackets:}\\
tx-\frac{(x-\mu)^2}{2\sigma^2}&amp;=\mu t+\frac{1}{2}\sigma^2t^2-\frac{[x-(\mu+\sigma^2t)]^2}{2\sigma^2}\\
\text{Therefore:}\\
\psi(t)&amp;=Ce^{\mu t+\frac{1}{2}\sigma^2t^2}\\
\text{where: }\\
C&amp;=\int^{\infty}_{-\infty}\frac{1}{(2\pi)^{1/2}\sigma}e^{-\frac{[x-(\mu+\sigma^2t)]^2}{2\sigma^2}}dx
\end{aligned}
ψ(t)square inside the brackets:tx−2σ2(x−μ)2​Therefore:ψ(t)where: C​=E(etX)=∫−∞∞​(2π)1/21​etx−2σ2(x−μ)2​dx=μt+21​σ2t2−2σ2[x−(μ+σ2t)]2​=Ceμt+21​σ2t2=∫−∞∞​(2π)1/2σ1​e−2σ2[x−(μ+σ2t)]2​dx​

然后我们用 μ+σ2t\mu+\sigma^2tμ+σ2t 替换掉 μ\muμ 并且 C=1C=1C=1 因此证明了结论的正确性

证毕。

节选自原文地址:https://www.face2ai.com/Math-Probability-5-6-The-Normal-Distributions-P2转载请标明出处

【概率论】5-6:正态分布(The Normal Distributions Part II)的更多相关文章

  1. 【概率论】5-6:正态分布(The Normal Distributions Part III)

    title: [概率论]5-6:正态分布(The Normal Distributions Part III) categories: - Mathematic - Probability keywo ...

  2. 【概率论】5-6:正态分布(The Normal Distributions Part I)

    title: [概率论]5-6:正态分布(The Normal Distributions Part I) categories: - Mathematic - Probability keyword ...

  3. 【概率论】3-7:多变量分布(Multivariate Distributions Part II)

    title: [概率论]3-7:多变量分布(Multivariate Distributions Part II) categories: Mathematic Probability keyword ...

  4. 【概率论】5-10:二维正态分布(The Bivariate Normal Distributions)

    title: [概率论]5-10:二维正态分布(The Bivariate Normal Distributions) categories: - Mathematic - Probability k ...

  5. 使用正态分布变换(Normal Distributions Transform)进行点云配准

    正态分布变换算法是一个配准算法,它应用于三维点的统计模型,使用标准优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面是PCL官网上的一个例 ...

  6. NDT(Normal Distributions Transform)算法原理与公式推导

    正态分布变换(NDT)算法是一个配准算法,它应用于三维点的统计模型,使用标准最优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面的公式推导 ...

  7. 正态分布(Normal distribution)又名高斯分布(Gaussian distribution)

    正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及project等领域都很重要的概率分布,在统计学的很多方面有着重大的影 ...

  8. 论文阅读 Characterization of Multiple 3D LiDARs for Localization and Mapping using Normal Distributions Transform

    Abstract 在这个文章里, 我们细致的比较了10种不同的3D LiDAR传感器, 用了一般的 Normal Distributions Transform (NDT) 算法. 我们按以下几个任务 ...

  9. 正态分布(normal distribution)与偏态分布(skewed distribution)

    存在正太分布的概念,自然也少不了偏态分布. 正态分布(normal distribution) 偏态分布(skewed distribution) 左偏态:left skewed distributi ...

随机推荐

  1. 2.Excel VBA术语

    Excel VBA名词术语 在这一章中,让我们了解常用的Excel VBA术语.这些术语将在进一步模块学习中使用,因此理解它们是非常关键的. 模块 1.模块是其中代码被写入的区域.这是一个新的工作簿, ...

  2. jacascript Ajax 学习之 JQuery-Ajax

    jQuery 对 ajax 操作进行了封装,在 jQuery 中 $.ajax() 属性最底层的方法,第2层是 load().$.get() 和 $.post() 方法,第3层是 $.getScrip ...

  3. HTTP无状态协议理解

    TTP协议是无状态协议. 无状态是指协议对于事务处理没有记忆能力.缺少状态意味着如果后续处理需要前面的信息,则它必须重传,这样可能导致每次连接传送的数据量增大.另一方面,在服务器不需要先前信息时它的应 ...

  4. 谷歌浏览器调用activex控件方法

    原文转自 https://jingyan.baidu.com/article/af9f5a2d0ebe5543140a4596.html activex是由微软开发,所以在支持上,目前原生态支持的只有 ...

  5. SQL Server2008本地数据库调用SP发送邮件

    一.首先要对本地数据库做配置 1.通过使用数据库邮件配置向导和sp_configure存储过程配置启用数据库邮件: 注:服务器名称填写发送服务器的路径或者IP,电子邮件地址为寄件者地址 配置好数据库邮 ...

  6. 将netcore网站部署到docker容器中

    一.背景 最近一直在看docker的教程,基础知识看的差不多了.理论总要运用于实践,所以下面我们就来把最简单的一个netcore网站托管到docker容器中. 环境:1.docker for wind ...

  7. 图片上传怎么用File接受文件

    xl_echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.——这才是真正的堪称强大!! - ...

  8. stm32内联汇编

    首先,先看一下mdk下的混合编程的基本方法: 使用如上方法就可以进行混合编程了. 但是要特殊注意一点,个人感觉这个是直接调用一个代码段,并非一个函数,因为他不会保护调用这个代码段之前的现场.比如: 在 ...

  9. lucene初探

    http://www.cnblogs.com/xing901022/p/3933675.html

  10. String.getBytes()方法中的中文编码问题

    得到一个操作系统默认的编码格式的字节数组.这表示在不同的操作系统下,返回的东西不一样! byte[] a= "中".getBytes() String.getBytes(Strin ...