2019牛客多校E Androgynos——自补图&&构造
题目
给出一个 $n$,判断是否存在 $n$ 个顶点的自补图,如果存在,输出边和映射。
分析
一个无向图若同构于它的补图,则称该图为自补图。
定理:一个自补图一定存在 $4k$ 或 $4k+1$ 个顶点.
证:
原图的边数+补图的边数=完全图的边数=n(n-1)/2
由于原图与补图同构,所以边数相等,
所以,原图的边数=n(n-1)/4,
边数肯定为整数,所以 4|n 或者 4|(n+1).
现在的问题是如何构造呢?
先考虑 $n=4k$,将其分成两半,
一半连接成完全图,一半为独立的点,
这样边数还不够,再将左上和右下一一相连,右上和左下一一相连。
很容易发现其补图变形一下就跟它一样,然后找一下对应关系。
#include<bits/stdc++.h>
using namespace std; int n; int main()
{
int T, kase=;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
printf("Case #%d: ", ++kase);
if(n % == )
{
printf("Yes\n");
int k = n/;
for(int i = ; i<= k;i++)
{
for(int j = ; j <= *k;j++)
{
if(j == i) printf("");
else printf("");
}
for(int j = *k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("\n");
}
for(int i = k+;i <= *k;i++)
{
for(int j = ; j <= *k;j++)
{
if(j == i) printf("");
else printf("");
}
for(int j = *k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("\n");
}
for(int i = *k+;i <= *k;i++)
{
for(int j = ;j <= k;j++) printf("");
for(int j = k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("\n");
}
for(int i = *k+;i <= *k;i++)
{
for(int j = ;j <= k;j++) printf("");
for(int j = k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("\n");
}
for(int i = *k;i >= *k+;i--) printf("%d ", i);
for(int i = *k;i >= *k+;i--) printf("%d ", i);
for(int i = k;i >= ;i--) printf("%d ", i);
for(int i = *k;i >= k+;i--) printf("%d%c", i, i == k+? '\n':' ');
}
else if(n % == )
{
printf("Yes\n");
int k = n/;
for(int i = ; i<= k;i++)
{
for(int j = ; j <= *k;j++)
{
if(j == i) printf("");
else printf("");
}
for(int j = *k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("1\n");
}
for(int i = k+;i <= *k;i++)
{
for(int j = ; j <= *k;j++)
{
if(j == i) printf("");
else printf("");
}
for(int j = *k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("1\n");
}
for(int i = *k+;i <= *k;i++)
{
for(int j = ;j <= k;j++) printf("");
for(int j = k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("0\n");
}
for(int i = *k+;i <= *k;i++)
{
for(int j = ;j <= k;j++) printf("");
for(int j = k+;j <= *k;j++) printf("");
for(int j = *k+;j <= *k;j++) printf("");
printf("0\n");
}
for(int i = ;i <= *k;i++) printf("");
for(int i = *k+;i <= *k+;i++) printf("");
printf("\n"); for(int i = *k;i >= *k+;i--) printf("%d ", i);
for(int i = *k;i >= *k+;i--) printf("%d ", i);
for(int i = k;i >= ;i--) printf("%d ", i);
for(int i = *k;i >= k+;i--) printf("%d ", i);
printf("%d\n", *k+);
}
else
{
printf("No\n");
}
}
}
2019牛客多校E Androgynos——自补图&&构造的更多相关文章
- 2019牛客多校第一场 I Points Division(动态规划+线段树)
2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...
- 2019牛客多校第二场 A Eddy Walker(概率推公式)
2019牛客多校第二场 A Eddy Walker(概率推公式) 传送门:https://ac.nowcoder.com/acm/contest/882/A 题意: 给你一个长度为n的环,标号从0~n ...
- 2019牛客多校第八场 F题 Flowers 计算几何+线段树
2019牛客多校第八场 F题 Flowers 先枚举出三角形内部的点D. 下面所说的旋转没有指明逆时针还是顺时针则是指逆时针旋转. 固定内部点的答案的获取 anti(A)anti(A)anti(A)或 ...
- 2019牛客多校 Round4
Solved:3 Rank:331 B xor 题意:5e4个集合 每个集合最多32个数 5e4个询问 询问l到r个集合是不是都有一个子集的xor和等于x 题解:在牛客多校第一场学了线性基 然后这个题 ...
- 2019牛客多校第一场E ABBA(DP)题解
链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...
- 2019牛客多校第四场 I题 后缀自动机_后缀数组_求两个串de公共子串的种类数
目录 求若干个串的公共子串个数相关变形题 对一个串建后缀自动机,另一个串在上面跑同时计数 广义后缀自动机 后缀数组 其他:POJ 3415 求两个串长度至少为k的公共子串数量 @(牛客多校第四场 I题 ...
- 2019牛客多校第四场 A meeting
链接:https://ac.nowcoder.com/acm/contest/884/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10485 ...
- [2019牛客多校第二场][G. Polygons]
题目链接:https://ac.nowcoder.com/acm/contest/882/G 题目大意:有\(n\)条直线将平面分成若干个区域,要求处理\(m\)次询问:求第\(q\)大的区域面积.保 ...
- 2019 牛客多校第一场 D Parity of Tuples
题目链接:https://ac.nowcoder.com/acm/contest/881/D 看此博客之前请先参阅吕凯飞的论文<集合幂级数的性质与应用及其快速算法>,论文中很多符号会被本文 ...
随机推荐
- C#中使用HttpClient来Post数据的内容HttpContent的各种格式
平时使用各种网络传输的时候基本上是以Json格式进行的, 所以对其他几种格式也是一知半解, 今天静下心对其好好梳理一番. 首先我借鉴了一篇文章(https://segmentfault.com/a/1 ...
- activate-power-mode安装与设置
Window-->activate-power-mode-->去掉combo/shake,其他三个全勾上,现在用起来就很爽了,赶紧体验吧.
- 猴子补丁(Monkey Patching)
猴子补丁是我在面试的时候接触的一到题,学python的时候,我根本就没有听说这个概念!那接下来我们来分析一下: 1.什么是猴子补丁? 2.猴子补丁的功能? 3.猴子补丁的应用场景? 一.什么是猴子补丁 ...
- 在一个form表单中实现多个submit不同的action
在button中用JS的事件绑定onclick实现,如下: <!-- employees是表单的name属性值--> <script type="text/javascri ...
- Nginx安装配置|Nginx反向代理|Nginx支持HTTPS|Nginx重定向
Nginx安装配置 可以直接看到最下面的HTTPS. Nginx安装 我的系统如下: No LSB modules are available. Distributor ID: Ubuntu Desc ...
- Word文档转PDF方法探索
最近的项目中需要将Word转换为PDF文件,找了很多方法和组件,最后找到了一些方法,和大家分享. 一.使用微软官方自带转换方法 好处是写法方便,官方支持,缺点是需要在服务器上安装office,而且要配 ...
- Ajax中解析Json的两种方法
eval(); //此方法不推荐 JSON.parse(); //推荐方法 一.两种方法的区别 我们先初始化一个json格式的对象: var jsonDate = '{ "name" ...
- Linux 数据库MySql 安装配置教程!
本文价绍Linux 相关mysql 安装和配置以及基本连接测试 1官网下载安装mysql-server # wget http://dev.mysql.com/get/mysql-community- ...
- 【vue开发】 父组件传值给子组件时 ,watch props 监听不到解决方案
解决方案: watch:{ data:{ immediate:true, handler:function(){ } }} 示例:
- 解决spring-boot-maven-plugin插件打包,springboot启动时报找不到主main问题
一:遇到的问题及解决方法 最近在搭建一个新项目时,使用spring-boot-maven-plugin插件打包,springboot项目在发布后启动时遇到找不到主main问题. 遇到这个问题当时感觉本 ...