Math

\(f_i\)为从\(i\)到\(i+1\)的期望步数。

\(f_i = 1-p + p(f_i + 2((1-q)^{n-i}(n-i) + q\sum_{j=0}^{n-i-1}(1-q)^{j}j))\)

移项相减得:

\(f_i = 1+\frac{2p((1-q)^{n-i}(n-i) + q\sum_{j=0}^{n-i-1}(1-q)^{j}j)}{1-p}\)

然后预处理一个前缀和就可以了。

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define y1 y11
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb emplace_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define pdd pair<double, double>
#define mem(a, b) memset(a, b, sizeof(a))
#define debug(x) cerr << #x << " = " << x << "\n";
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//head const int N = 1e5 + 10;
int n;
double p, q, _q[N], sum[N];
int main() {
while(~scanf("%d %lf %lf", &n, &p, &q)) {
sum[0] = 0;
_q[0] = 1;
for (int i = 1; i <= n; ++i) {
_q[i] = _q[i-1]*(1-q);
sum[i] = sum[i-1] + _q[i]*i;
}
double ans = 0;
for (int i = 0; i < n; ++i) {
ans += 1+(2*p*(_q[n-i]*(n-i)+q*sum[n-i-1]))/(1-p);
}
printf("%.10f\n", ans);
}
return 0;
}

HDU 6568 Math的更多相关文章

  1. hdu 5105 Math Problem(数学)

    pid=5105" target="_blank" style="">题目链接:hdu 5105 Math Problem 题目大意:给定a.b ...

  2. HDU 5105 Math Problem

    让求  f(x)=|a∗x3+b∗x2+c∗x+d|(L≤x≤R)的最大值 这个题目讨论a和b的值,如果a==0的话,那么这个方程就变成了一个一元二次方程,直接找端点和对称轴(如果对称轴在给定的区间内 ...

  3. HDU 1714 math

    #include<stdio.h>#include<string.h>#include<iostream>#include<iomanip>#inclu ...

  4. hdu 6182A Math Problem(快速幂)

    You are given a positive integer n, please count how many positive integers k satisfy kk≤nkk≤n.  Inp ...

  5. hdu分类 Math Theory(还有三题!)

    这个分类怎么觉得这么水呢.. 这个分类做到尾的模板集: //gcd int gcd(int a,int b){return b? gcd(b, a % b) : a;} //埃氏筛法 O(nlogn) ...

  6. HDU 5105 Math Problem --数学,求导

    官方题解: f(x)=|a∗x3+b∗x2+c∗x+d|, 求最大值.令g(x)=a∗x3+b∗x2+c∗x+d,f(x)的最大值即为g(x)的正最大值,或者是负最小值.a!=0时, g′(x)=3∗ ...

  7. hdu 4427 Math Magic DP

    思路: dp[i][j][k]表示满足前i个数,和为j,lcm为k的数目. 设a为解的第i+1个数. 那么状态转移就为 dp[i+1][j+a][lcm(a,k)]+=dp[i][j][k]. 但是由 ...

  8. hdu 3927 Math Geek

    纯数论题,不解释!!!! 代码如下: #include<stdio.h> int main(){ ,m; scanf("%d",&t); while(t--){ ...

  9. hdu 4427 Math Magic

    一个长了一张数学脸的dp!!dp[ i ][ s ][ t ] 表示第 i 个数,sum为 s ,lcm下标为 t 时的个数.显然,一个数的因子的lcm还是这个数的因子,所以我们的第三维用因子下标代替 ...

随机推荐

  1. EOS 资源汇总

    EOS 资源汇总     A curated list of EOS Ecosystem by [SuperONE](https://superone.io/) EOS 主网 超级节点 https:/ ...

  2. IO流学习

    1,流是一组有顺序的,有起点和重点的字节集合,是对数据传输的总称和抽象.即数据在两个设备之间的传输称作流.流的本质就是数据传输,根据数据传输的特性,将流抽象为各种累,方便直观的进行数据操作. 2,根据 ...

  3. 最新 创梦天地java校招面经 (含整理过的面试题大全)

    从6月到10月,经过4个月努力和坚持,自己有幸拿到了网易雷火.京东.去哪儿.创梦天地等10家互联网公司的校招Offer,因为某些自身原因最终选择了创梦天地.6.7月主要是做系统复习.项目复盘.Leet ...

  4. vue中的$listeners属性作用

    一.当组件的根元素不具备一些DOM事件,但是根元素内部元素具备相对应的DOM事件,那么可以使用$listeners获取父组件传递进来的所有事件函数,再通过v-on="xxxx"绑定 ...

  5. Celery—分布式的异步任务处理系统

    Celery 1.什么是Clelery Celery是一个简单.灵活且可靠的,处理大量消息的分布式系统 专注于实时处理的异步任务队列 同时也支持任务调度 Celery架构 Celery的架构由三部分组 ...

  6. luoguP1463:反素数ant(打表心得☆)

    题目描述 对于任何正整数x,其约数的个数记作g(x).例如g()=.g()=. 如果某个正整数x满足:g(x)>g(i) <i<x,则称x为反质数.例如,整数1,,,6等都是反质数. ...

  7. Windows 10系统快捷键

    虚拟桌面 创建新的虚拟桌面:Win + Ctrl + D 关闭当前虚拟桌面:Win + Ctrl + F4 切换虚拟桌面:Win + Ctrl +左/右 任务视图:Win + Tab Win10常用W ...

  8. 解决无/var/log/messages 问题

    转载于:https://blog.csdn.net/C_Major/article/details/51321684 1 内核编程insmod后,Ubuntu查看日志无/var/log/message ...

  9. C#中输入法全角转换半角

    一般情况下,我们都是使用英文半角的来进行编程,包括输入框和密码框的设定一般也是英文半角,但往往有些人使用全角输入,登陆不进去还以为你系统错误,现整理了几种全角切换半角和设定输入法的几种方法. 方法一: ...

  10. 记一次Spring Cloud压力测试

    前言 公司打算举办一场活动,现场参与活动人数比较多.针对于可能访问比较密集的接口进行压力测试.使用jmeter进行测试,请求并发稍微多些,系统就会挂起. 针对压力测试出现的问题,因为并发超过1秒钟10 ...