Codeforces 1246D/1225F Tree Factory (构造)
题目链接
https://codeforces.com/contest/1246/problem/D
题解
首先考虑答案的下界是\(n-1-dep\) (\(dep\)为树的深度,即任何点到根的最大边数),因为每一次操作只会使一个子树内的点深度\(-1\), 也就最多使得最大深度\(-1\).
那么这个下界能否达到呢?答案是肯定的,因为考虑将过程倒过来,每次选择一个子树将它沿某条边向下移动,对于任何一棵非链的树,最深点到根的路径上一定存在分叉,因此就一定可以通过移动使得最大深度\(+1\).
考虑如何构造: 我的做法是依然倒着思考,DFS整棵树,保证最深点所在子树最后遍历,然后得到的遍历序就是输出的第一个序列。从前往后遍历第一个序列,在第二个答案序列中插入数量等于从上一个点DFS到这个点前进的步数的后一个数。
例如从3
号点走到4
号点,先后退了\(2\)步又前进了\(3\)步,那么就在第二个答案序列中插入\(3\)个\(4\).
至于算法的正确性,手推一下就很显然了。
代码
#include<bits/stdc++.h>
#define llong long long
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 1e5;
struct Edge
{
int v,nxt;
} e[(N<<1)+3];
int fe[N+3];
int fa[N+3];
int mxd[N+3];
int hvs[N+3];
vector<int> id;
vector<int> opt;
int n,en,cnt;
void addedge(int u,int v)
{
en++; e[en].v = v;
e[en].nxt = fe[u]; fe[u] = en;
}
void dfs1(int u)
{
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(v==fa[u]) continue;
dfs1(v);
if(mxd[v]+1>mxd[u]) {mxd[u] = mxd[v]+1,hvs[u] = v;}
}
}
void dfs2(int u)
{
id.push_back(u);
for(int i=1; i<=cnt; i++) opt.push_back(u);
cnt = 0;
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(v==fa[u]||v==hvs[u]) continue;
dfs2(v);
}
if(hvs[u]) {dfs2(hvs[u]);}
cnt++;
}
int main()
{
scanf("%d",&n);
for(int i=2; i<=n; i++) {scanf("%d",&fa[i]); fa[i]++; addedge(fa[i],i); addedge(i,fa[i]);}
dfs1(1);
dfs2(1);
for(int i=0; i<id.size(); i++) printf("%d ",id[i]-1); puts("");
printf("%d\n",opt.size());
for(int i=0; i<opt.size(); i++) printf("%d ",opt[i]-1); puts("");
return 0;
}
Codeforces 1246D/1225F Tree Factory (构造)的更多相关文章
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题
F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...
- Problem - D - Codeforces Fix a Tree
Problem - D - Codeforces Fix a Tree 看完第一名的代码,顿然醒悟... 我可以把所有单独的点全部当成线,那么只有线和环. 如果全是线的话,直接线的条数-1,便是操作 ...
- codeforces 1041 E. Tree Reconstruction 和度数有关的构造树
CF 1041E:http://codeforces.com/contest/1041/problem/E 题意: 告诉你一个树的节点个数,显然有n-1条边.已知去掉一条边后,两个集合中最大的节点值. ...
- Codeforces Round #453 (Div. 1) D. Weighting a Tree(构造)
题意 一个 \(n\) 个点 \(m\) 条边的无向连通图中每个点都有一个权值,现在要求给每条边定一个权值,满足每个点的权值等于所有相连的边权之和,权值可负. 题解 如果图是一棵树,那么方案就是唯一的 ...
- CodeForces 658C Bear and Forgotten Tree 3 (构造)
题意:构造出一个 n 个结点,直径为 m,高度为 h 的树. 析:先构造高度,然后再构造直径,都全了,多余的边放到叶子上,注意直径为1的情况. 代码如下: #pragma comment(linker ...
- 【CF1247F】Tree Factory(构造)
题意:给定一棵n个点的树,要求将一条可以随意标号的链通过若干次操作变成这棵树 一次操作是指若v不为根且v的父亲不为根,则将v以及v的子树移到v的父亲的父亲上 要求给出标号方案,操作次数以及方案 n&l ...
- 详细讲解Codeforces Round #624 (Div. 3) E. Construct the Binary Tree(构造二叉树)
题意:给定节点数n和所有节点的深度总和d,问能否构造出这样的二叉树.能,则输出“YES”,并且输出n-1个节点的父节点(节点1为根节点). 题解:n个节点构成的二叉树中,完全(满)二叉树的深度总和最小 ...
- Codeforces.911F.Tree Destruction(构造 贪心)
题目链接 \(Description\) 一棵n个点的树,每次可以选择树上两个叶子节点并删去一个,得到的价值为两点间的距离 删n-1次,问如何能使最后得到的价值最大,并输出方案 \(Solution\ ...
- Codeforces 1247F. Tree Factory
传送门 正难则反,把链操作成树不好想,那么考虑一下如何把树变成链 每次操作相当于把一个兄弟变成儿子(我把你当兄弟你竟然想把我当儿子.jpg) 注意到每次操作最多只能使树的深度增加 $1$ 因为链的深度 ...
随机推荐
- Linux/CentOS 配置Mysql-server过程和遇到错误解决方法
第一步:下载mysql-server 方法1.wget url(你所要下载的链接,可以从mysq官网查找)到当前目录下 方法2.到mysql官网下载包之后通过xftp传到linux 第二步:解压tar ...
- Java 关于String Pool
下面的文章讲得挺清楚: https://www.baeldung.com/java-string-pool 再加一个关于虚拟机的,因为上面的文章提到了JVM: https://abhirockzz.w ...
- Spring实战(一)Spring简介---呕心沥血只为让Java开发更简单。
Spring诞生的初衷是为了替代更加重量级的企业级Java技术(EJB). 相对于EJB来说,Spring提供了更加轻量级和简单的编程模型,它增强了POJO(简单老式Java对象)的功能,使简单的Ja ...
- EFcore的 基础理解<一>
1.新建.netCore Web项目.这时候,还与EF没啥关系. 2.然后添加类 Bolg.和 Post 参考这里 https://docs.microsoft.com/en-us/ef/cor ...
- C++性能榨汁机之虚函数的开销
C++性能榨汁机之虚函数的开销 来源 http://irootlee.com/juicer_vtable/ 虚函数的实现 虽然C++标准并没有规定编译器实现虚函数的方式,但是大部分编译器均是采用了虚 ...
- WinPE基础知识之代码解析
void CMyPE::OnClickedButton1() { // TODO: 在此添加控件通知处理程序代码 // 打开一个文件夹选择对话框 CFileDialog dlg(TRUE); dlg. ...
- python小知识- webbrowser模块 + join()方法
一.join描述 将序列中的元素以指定的字符连接生成一个新的字符串. 语法 语法: ‘sep’.join(seq) 参数说明: sep:分隔符.可以为空 seq:要连接的元素序列.字符串.元组.字典 ...
- Image Processing and Analysis_8_Edge Detection:Finding Edges and Lines in Images by Canny——1983
此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...
- Flutter——Row组件(水平布局组件)
Row组件的常用属性 属性 说明 mainAxisAlignment 主轴的排序方式 crossAxisAlignment 次轴的排序方式 children 组件子元素 import 'package ...
- Centos7虚拟机根分区扩展
线上的kvm虚拟机,原来只规划了8G,后来发现硬盘动不动就被日志塞满了,需要进行扩容. 扩容步骤如下: 1.先把kvm虚拟机关机 2.在宿主机上进行kvm虚拟机的磁盘扩容 qemu-img resiz ...