题目链接

https://codeforces.com/contest/1246/problem/D

题解

首先考虑答案的下界是\(n-1-dep\) (\(dep\)为树的深度,即任何点到根的最大边数),因为每一次操作只会使一个子树内的点深度\(-1\), 也就最多使得最大深度\(-1\).

那么这个下界能否达到呢?答案是肯定的,因为考虑将过程倒过来,每次选择一个子树将它沿某条边向下移动,对于任何一棵非链的树,最深点到根的路径上一定存在分叉,因此就一定可以通过移动使得最大深度\(+1\).

考虑如何构造: 我的做法是依然倒着思考,DFS整棵树,保证最深点所在子树最后遍历,然后得到的遍历序就是输出的第一个序列。从前往后遍历第一个序列,在第二个答案序列中插入数量等于从上一个点DFS到这个点前进的步数的后一个数。

例如从3号点走到4号点,先后退了\(2\)步又前进了\(3\)步,那么就在第二个答案序列中插入\(3\)个\(4\).

至于算法的正确性,手推一下就很显然了。

代码

#include<bits/stdc++.h>
#define llong long long
using namespace std; inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
} const int N = 1e5;
struct Edge
{
int v,nxt;
} e[(N<<1)+3];
int fe[N+3];
int fa[N+3];
int mxd[N+3];
int hvs[N+3];
vector<int> id;
vector<int> opt;
int n,en,cnt; void addedge(int u,int v)
{
en++; e[en].v = v;
e[en].nxt = fe[u]; fe[u] = en;
} void dfs1(int u)
{
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(v==fa[u]) continue;
dfs1(v);
if(mxd[v]+1>mxd[u]) {mxd[u] = mxd[v]+1,hvs[u] = v;}
}
} void dfs2(int u)
{
id.push_back(u);
for(int i=1; i<=cnt; i++) opt.push_back(u);
cnt = 0;
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(v==fa[u]||v==hvs[u]) continue;
dfs2(v);
}
if(hvs[u]) {dfs2(hvs[u]);}
cnt++;
} int main()
{
scanf("%d",&n);
for(int i=2; i<=n; i++) {scanf("%d",&fa[i]); fa[i]++; addedge(fa[i],i); addedge(i,fa[i]);}
dfs1(1);
dfs2(1);
for(int i=0; i<id.size(); i++) printf("%d ",id[i]-1); puts("");
printf("%d\n",opt.size());
for(int i=0; i<opt.size(); i++) printf("%d ",opt[i]-1); puts("");
return 0;
}

Codeforces 1246D/1225F Tree Factory (构造)的更多相关文章

  1. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题

    F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...

  2. Problem - D - Codeforces Fix a Tree

    Problem - D - Codeforces  Fix a Tree 看完第一名的代码,顿然醒悟... 我可以把所有单独的点全部当成线,那么只有线和环. 如果全是线的话,直接线的条数-1,便是操作 ...

  3. codeforces 1041 E. Tree Reconstruction 和度数有关的构造树

    CF 1041E:http://codeforces.com/contest/1041/problem/E 题意: 告诉你一个树的节点个数,显然有n-1条边.已知去掉一条边后,两个集合中最大的节点值. ...

  4. Codeforces Round #453 (Div. 1) D. Weighting a Tree(构造)

    题意 一个 \(n\) 个点 \(m\) 条边的无向连通图中每个点都有一个权值,现在要求给每条边定一个权值,满足每个点的权值等于所有相连的边权之和,权值可负. 题解 如果图是一棵树,那么方案就是唯一的 ...

  5. CodeForces 658C Bear and Forgotten Tree 3 (构造)

    题意:构造出一个 n 个结点,直径为 m,高度为 h 的树. 析:先构造高度,然后再构造直径,都全了,多余的边放到叶子上,注意直径为1的情况. 代码如下: #pragma comment(linker ...

  6. 【CF1247F】Tree Factory(构造)

    题意:给定一棵n个点的树,要求将一条可以随意标号的链通过若干次操作变成这棵树 一次操作是指若v不为根且v的父亲不为根,则将v以及v的子树移到v的父亲的父亲上 要求给出标号方案,操作次数以及方案 n&l ...

  7. 详细讲解Codeforces Round #624 (Div. 3) E. Construct the Binary Tree(构造二叉树)

    题意:给定节点数n和所有节点的深度总和d,问能否构造出这样的二叉树.能,则输出“YES”,并且输出n-1个节点的父节点(节点1为根节点). 题解:n个节点构成的二叉树中,完全(满)二叉树的深度总和最小 ...

  8. Codeforces.911F.Tree Destruction(构造 贪心)

    题目链接 \(Description\) 一棵n个点的树,每次可以选择树上两个叶子节点并删去一个,得到的价值为两点间的距离 删n-1次,问如何能使最后得到的价值最大,并输出方案 \(Solution\ ...

  9. Codeforces 1247F. Tree Factory

    传送门 正难则反,把链操作成树不好想,那么考虑一下如何把树变成链 每次操作相当于把一个兄弟变成儿子(我把你当兄弟你竟然想把我当儿子.jpg) 注意到每次操作最多只能使树的深度增加 $1$ 因为链的深度 ...

随机推荐

  1. Linux/CentOS 配置Mysql-server过程和遇到错误解决方法

    第一步:下载mysql-server 方法1.wget url(你所要下载的链接,可以从mysq官网查找)到当前目录下 方法2.到mysql官网下载包之后通过xftp传到linux 第二步:解压tar ...

  2. Java 关于String Pool

    下面的文章讲得挺清楚: https://www.baeldung.com/java-string-pool 再加一个关于虚拟机的,因为上面的文章提到了JVM: https://abhirockzz.w ...

  3. Spring实战(一)Spring简介---呕心沥血只为让Java开发更简单。

    Spring诞生的初衷是为了替代更加重量级的企业级Java技术(EJB). 相对于EJB来说,Spring提供了更加轻量级和简单的编程模型,它增强了POJO(简单老式Java对象)的功能,使简单的Ja ...

  4. EFcore的 基础理解<一>

    1.新建.netCore Web项目.这时候,还与EF没啥关系. 2.然后添加类 Bolg.和 Post   参考这里  https://docs.microsoft.com/en-us/ef/cor ...

  5. C++性能榨汁机之虚函数的开销

    C++性能榨汁机之虚函数的开销 来源  http://irootlee.com/juicer_vtable/ 虚函数的实现 虽然C++标准并没有规定编译器实现虚函数的方式,但是大部分编译器均是采用了虚 ...

  6. WinPE基础知识之代码解析

    void CMyPE::OnClickedButton1() { // TODO: 在此添加控件通知处理程序代码 // 打开一个文件夹选择对话框 CFileDialog dlg(TRUE); dlg. ...

  7. python小知识- webbrowser模块 + join()方法

    一.join描述 将序列中的元素以指定的字符连接生成一个新的字符串. 语法 语法: ‘sep’.join(seq) 参数说明: sep:分隔符.可以为空 seq:要连接的元素序列.字符串.元组.字典 ...

  8. Image Processing and Analysis_8_Edge Detection:Finding Edges and Lines in Images by Canny——1983

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  9. Flutter——Row组件(水平布局组件)

    Row组件的常用属性 属性 说明 mainAxisAlignment 主轴的排序方式 crossAxisAlignment 次轴的排序方式 children 组件子元素 import 'package ...

  10. Centos7虚拟机根分区扩展

    线上的kvm虚拟机,原来只规划了8G,后来发现硬盘动不动就被日志塞满了,需要进行扩容. 扩容步骤如下: 1.先把kvm虚拟机关机 2.在宿主机上进行kvm虚拟机的磁盘扩容 qemu-img resiz ...