Harrison Kinsley ——PythonProgramming.net的创始人

TensorFlow官方网站有相当多的文档和教程,但这些往往认为读者掌握了一些机器学习和人工智能知识。除了知道ML和AI,你也应该对Python编程语言非常熟练。因此,在开始学习如何使用TensorFlow前,首先学习更多的Python语言,而不是与机器学习直接相关的任何东西。

1、假设熟练Python,但不会机器学习,那么可以查看这个机器学习实践w / Python教程,其中涵盖了与机器学习相关的概念、算法、理论、应用程序等;

2、如果已经掌握了Python和机器学习的基础知识,但还不知道Deep Learning / TensorFlow,那么可以从神经网络介绍部分开始 。

3、如果已经知道神经网络/深度学习,那么可以从安装TensorFlow教程开始,或者可以从TensorFlow基础教程开始,这将直接导致实际建模一个深层神经网络

Parag K Mital ——Kadenze Inc.机器智能总监

刚刚推出了一个关于Tensorflow的新课程:使用TensorFlow |创建深度学习应用程序

Kadenze与其他课程不同,这是一个以应用为导向的课程,通过鼓励探索创造性思维和深层神经网络的创造性应用,教你Tensorflow的基础知识以及最先进的算法,强烈鼓励尝试这门课程。这是唯一全面的在线课程,将教会你如何使用Tensorflow和开发您的创造潜力,了解如何应用这些技术创建神经网络。

课程资料:

本课程将介绍深度学习:构建人工智能算法的最先进的方法。涵盖深度学习的基本结构、意义,原理并开发必要的代码搭建各种算法,如深卷积网络,变分自动编码器,生成对抗网络和循环神经网络。本课程的主要重点是了解如何构建这些算法的必要结构以及如何应用它们来探索创意应用程序。

计划表

学期1:Tensorflow简介

介绍数据与机器和深度学习算法的重要性,创建数据集的基础知识,如何预处理数据集,然后跳转到Tensorflow。此外将学习Tensorflow的基本结构,并了解如何使用它来过滤图像。

学期2:训练一个网络W / Tensorflow

将看到神经网络如何工作,网络是如何“训练”。然后将构建自己的第一个神经网络,并将其用于训练神经网络如何绘制图像的应用程序。

学期3:无监督和监督学习

探索能够编码大型数据集的深层神经网络,并了解如何使用此编码来探索数据集的“潜在”维度或生成全新内容。还将学习另一种类型的执行辨别学习的模型,并了解如何使用它来预测图像的标签。

学期4:可视化和幻化表示

指导执行一些真正有趣的可视化,包括可以产生无限生成分形的“深度梦想”或者“风格网络”,它允许我们将一个图像的内容和另一个图像的风格结合起来自动生成艺术美学。

学期5:生成模型

最后提供了一些未来生成建模方向的预测,包括一些现有技术模型,例如“生成式对抗网络”,以及其在“变分自动编码器”内的实现等内容。

Antonio Cangiano ——IBM软件开发和技术推广

大数据大学刚刚推出了一个免费的深层学习与TensorFlow课程。显然还有其他有效的资源可用,但建议你看一下本课程。同样查看目录中的其他数据科学和机器学习课程。课程是完全免费的,并且许多都有完成证书和IBM支持的开放徽章。

Ian Dewancker ——SigOpt研究工程师

最好的学习方式可能是通过学习和实验一个工作过的例子。在SigOpt有一个工作是通过TensorFlow示例调整一个卷积神经网络,该工程在github页面链接:sigopt / sigopt-examples

下面简短的视频教程讲授如何创建一个能够运行TensorFlow代码的AWS环境。该视频还概述了并行探索CNN配置的简单策略。

https://youtu.be/CGI_RKVnDpE

Ish Girwan ——在印度管理学院学习

作为初学者,可以使用以下资源:

学习TensorFlow

aymericdamien / TensorFlow-Examples

nlintz / TensorFlow-Tutorials

Google TensorFlow教程

机器智能的开源软件库

Kuntal Mukherjee ——在Wipro Technologies工作

如果你是初学者,建议按照以下步骤学习:

1 首先快速学习Python。

2 学习AI和机器学习课程,可以尝试MIT OCW。

3 从TensorFlow网站教程开始。如果你已经在这个领域经历过,那么可以去步骤(3)开始学习更高级教程。

Rodolfo Bonnin ——建筑机器学习项目与Tensorflor 作家

最简单的方法之一是查看和修改一些代码示例与额外的注释;

https://github.com/tobigithub/tensorflow-deep-learning/wiki

Ankit Sachan ——Ilenze.com的创始人

在开始的时候遇到了一些与困难。所以创造了一系列的教程。教程在Linkedin计算机视觉组上变得非常流行。

10分钟实用TensorFlow快速学习教程»CV-Tricks.com

Angel Mario Castro Martinez ——在马克斯普朗克学会工作

对我来说,最好的起点是主页本身:

http://www.tensorflow.org/versio...

安装并习惯了如何处理数据和训练模型的方式,你可以尝试MNIST教程或其他几个教程:

https://github.com/kronos-cm/Ten...

https://github.com/jasonbaldridg...

如果正在寻找一个压缩版本的上述主题,可以尝试:

https://medium.com/@ilblackdrago...

Suraj Vantigodi ——在印度班加罗尔理工学院工作

一个有用的链接学习TensorFlow,一旦完成后可以去Udacity课程深度学习| Udacity

Kim Brian ——5年计算机编程经验

除了使用TensorFlow,有很多其它可能的解决方案。如果你是一个热心编码的人,建议不要使用TensorFlow,直到你知道如何编码基本的AI。

正如Kuntal Mukherjee先生所说,建议从基础知识中学习。

Chirila Sorina ——在Iasi计算机科学学院学习

请查看以下两个答案:

TensorFlow(开源s / w库):如何使用张量流,什么是更好地了解它的最佳方式?

使用TensorFlow处理自然语言的具体步骤有哪些?

Ashwin D Kini ——喜欢阅读的Web开发人员

猜猜你没有访问过这个网站:

http://www.tensorflow.org/tutori...

对于初学者:

http://www.tensorflow.org/tutori...

Tuan Vu ——数据据科学家

如果你想了解张量流的基本结构,这个网站可能有帮助:学习TensorFlow

Kishore Karunakaran ——Vanenburg Software高级软件工程师

Tensorflow的教程:学习TensorFlow

Lifu Yi ——Mindx.ai的首席执行官

等待下一个更好的版本再学习它,当前版本的结构导致其糟糕的性能表现。

数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!

本文由北邮@爱可可-爱生活老师推荐,阿里云云栖社区组织翻译。

文章原标题《Where can I start learning how to using TensorFlow》 译者:海棠

如何开始学习使用TensorFlow?的更多相关文章

  1. 深度学习之TensorFlow构建神经网络层

    深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可 ...

  2. 深度学习(TensorFlow)环境搭建:(三)Ubuntu16.04+CUDA8.0+cuDNN7+Anaconda4.4+Python3.6+TensorFlow1.3

    紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把N ...

  3. 【原创 深度学习与TensorFlow 动手实践系列 - 4】第四课:卷积神经网络 - 高级篇

    [原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleN ...

  4. 【原创 深度学习与TensorFlow 动手实践系列 - 3】第三课:卷积神经网络 - 基础篇

    [原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实 ...

  5. 分享《机器学习实战基于Scikit-Learn和TensorFlow》中英文PDF源代码+《深度学习之TensorFlow入门原理与进阶实战》PDF+源代码

    下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+ ...

  6. 深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动

    前几天把刚拿到了2台GPU机器组装好了,也写了篇硬件配置清单的文章——<深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装>.这两台也在安装Ubuntu 16.04和108 ...

  7. 深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装

    一.硬件采购 近年来,人工智能AI越来越多被人们所了解,尤其是AlphaGo的人机围棋大战之后,机器学习的热潮也随之高涨.最近,公司采购了几批设备,通过深度学习(TensorFlow)来研究金融行业相 ...

  8. 截图:【炼数成金】深度学习框架Tensorflow学习与应用

    创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版 ...

  9. 转发——谷歌云官方:一小时掌握深度学习和 TensorFlow

    转发——谷歌云官方:一小时掌握深度学习和 TensorFlow 本文转发自新智元,链接如下: http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==& ...

  10. 深度学习篇——Tensorflow配置(傻瓜安装模式)

    前言 如果你是一个完美主义者,那么请绕过此文,请参考<深度学习篇——Tensorflow配置(完美主义模式)> 安装 pip install tensorflow ok,只要不报错,安装就 ...

随机推荐

  1. Python计算AUC

    AUC(Area under curve)是机器学习常用的二分类评测手段,直接含义是ROC曲线下的面积.另一种解释是:随机抽出一对样本(一个正样本,一个负样本),然后用训练得到的分类器来对这两个样本进 ...

  2. aiops常用算法

    1.数据聚合/关联技术 概念聚类算法AOI分类算法K近邻/贝叶斯分类器/logistic回归(LR)/支持向量机(SVM)/随机森林(RF) 2.数据异常点检测技术独立森林算法 3.故障诊断和分析策略 ...

  3. [转]10分钟了解分布式CAP、BASE理论

    原文: https://www.cnblogs.com/chengtian/p/11278072.html ---------------------------------------------- ...

  4. 用python计算最高投标限价

    题目是文绉绉的说法,背景来于群里提问,是一份文件里面关于最高投标限价的确定. 最高投标限价下浮率在开标前在开标现场采取逐标段摇珠方式确定,摇珠操作办法如下:在下浮率摇珠范围内,以0.1%为以一档次增序 ...

  5. Pycharm----破解码的获取

    网站:http://idea.lanyus.com/ 复制后,粘贴到pycharm中的激活即可

  6. vue1 父子组件$emit,$on

  7. 27-SQLServer系统扩展存储过程

    一.注意点 1.在SQLServer中,有些系统扩展存储过程,是有风险,需要取消public角色的执行权限. 2.从SQLServer2005开始就不能通过sp_dropextendedproc 删除 ...

  8. linux下解决安装jdk后‘环境变量’不生效的问题

    1.是否需要配置环境变量,主要看java -version 显示的版本是否为你期望的版本: (1)不需要配置环境变量的情况 使用java -version查看,版本显示正好是你刚刚安装的版本,这一般为 ...

  9. SIGAI深度学习第九集 卷积神经网络3

    讲授卷积神经网络面临的挑战包括梯度消失.退化问题,和改进方法包括卷积层.池化层的改进.激活函数.损失函数.网络结构的改 进.残差网络.全卷机网络.多尺度融合.批量归一化等 大纲: 面临的挑战梯度消失问 ...

  10. 【题解】Mountain Walking-C++

    题目题意翻译题意简述:现在给一个N*N的矩阵,找一条路径从左上角走到右下角,每次可以向上下左右四个方向中某个方向走.要求走过的点中,数字最大的减去最小的.要求值越小越好.现在就是要求这个值. 输入格式 ...