RollingRegression(滚动回归分析)之Python实现
# -*- coding: utf-8 -*-
"""
Created on Sat Aug 18 11:08:38 2018
@author: acadsoc
"""
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from pyecharts import Bar, Line, Page, Overlap
import statsmodels.api as sm
from sklearn.preprocessing import StandardScaler
# import pymssql
from dateutil import parser
import copy
import os
import sys
from featureSelection import featureSelection
plt.style.use('ggplot') # 设置ggplot2画图风格
# 根据不同平台设置其中文字体路径
if sys.platform == 'linux':
zh_font = matplotlib.font_manager.FontProperties(
fname='path/anaconda3/lib/python3.6/site-packages/matplotlib/mpl-data/fonts/ttf/STZHONGS.TTF')
else:
zh_font = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\STZHONGS.ttf') # 设置中文字体
# 根据不同平台设定工作目录
if sys.platform == 'linux':
os.chdir(path) # Linux path
else:
os.chdir(path) # Windows path
class rollingRegression():
'''
滚动多元回归分析类。
参数
----
response : str
回归因变量。
date_begin : datetime
起始日期。
date_end : datetime
截止日期。
rolling_days : int
滚动天数。
intercept : bool
回归方程是否带常数项。
p_value_threshold : float
回归系数按p值显示阈值。
normalize : bool
数据是否标准化。
属性
----
coef_ : dataframe
回归系数。
coef_pvalue_ : dataframe
回归系数pvalue。
r2_ : dataframe
回归模型Rsquared 和 Rsquared_adj。
echarts_page_ : echarts_page
echarts_page 文件。
'''
def __init__(self, response='新单数', date_begin='2018-01-01', date_end='2018-07-31', rolling_days=30,
intercept=False, p_value_threshold=.1, normalize=False):
self.response = response # 回归因变量
self.date_begin = date_begin # 起始日期
self.date_end = date_end # 终止日期
self.rolling_days = rolling_days # 滚动天数
self.intercept = intercept # 回归方程是否带常数项
self.p_value_threshold = p_value_threshold # p值显示阈值
self.normalize = normalize # 是否将数据标准化后再进行回归分析
if self.normalize: # 如果数据标准化,常数强制设置为0
self.intercept = False
# 起始日期间隔必须大于等于滚动天数
if (parser.parse(self.date_end) - parser.parse(self.date_begin)).days < self.rolling_days:
raise IOError('起始日期间隔必须大于等于滚动天数,请重新选择起始日期或者调整滚动日期。')
def getData(self, file='业绩相关数据2018-8-1.xlsx', variabls_in=None, variables_out=None):
'''
读取数据。
注:该方法只适合读取特定方式的数据,第一列应是datetime类型,第二列是因变量,其余是自变量。
参数
----
file : str
文件路径及文件名。
variabls_in : list, 默认是None
需要用到的自变量。
variables_out : list, 默认是None
不用的自变量。
return
------
df_ : dataframe
分析用数据框,response在第一列。
'''
if variabls_in: # 如果有选入模型的自变量,强制将variable_out设置为None
variables_out = None
if file.split('.')[-1] == 'xlsx': # 根据不同文件格式读取数据
df = pd.read_excel(file)
elif file.split('.')[-1] == 'txt':
df = pd.read_table(file)
else:
df = eval('pd.read_' + file.split('.')[-1] + '(file)')
df.index = df.iloc[:, 0] # 将日期变为索引
df = df.iloc[:, 1:]
df[df.isnull()] = 0 # 缺失值填充
df = df.astype(float) # 将数据框object格式转换为float
# dateTransfer = np.vectorize(self._dateTransfer) # 向量化日期转换函数
# df.index = dateTransfer(df.index) # 转换索引日期格式
df.index = pd.DatetimeIndex(df.index) # 将索引转换为datetime格式
if variabls_in:
df = pd.concat([df[df.columns[0]], df[variabls_in]], axis=1)
if variables_out:
for var in variables_out:
df.pop(var)
if self.normalize: # 数据标准化
df_std = StandardScaler().fit_transform(df)
self.df_ = pd.DataFrame(df_std, index=df.index, columns=df.columns)
else:
self.df_ = df
return self
def rollingOLS(self, df):
'''
滚动日期多元线性模型。
参数
----
df : dataframe
回归分析用数据框,response在第一列。
return
------
coef : dataframe
回归系数。
coef_pvalue : dataframe
回归系数pvalue。
r2 : dataframe
回归模型Rsquared 和 Rsquared_adj。
'''
df = df.loc[(df.index>=self.date_begin) & (df.index<=self.date_end), :] # 按照参数给定起始、截止时间选择数据
df = df.sort_index(ascending=True) # 按日期升序排序
coef = {}
coef_pvalue = {}
r2 = {}
# 从起始日开始做回归
for i in range(df.shape[0] - self.rolling_days):
date = df.index[i+self.rolling_days]
data = df.iloc[i:i+self.rolling_days, :]
X = data.iloc[:, 1:]
y = data.iloc[:, 0]
# 线性回归模型拟合
model = sm.OLS(y, X, hasconst=self.intercept)
lr = model.fit()
# 按字典格式保存系数、pvalue、R2
coef[date] = lr.params
coef_pvalue[date] = lr.pvalues
r2[date] = []
r2[date].append(lr.rsquared)
r2[date].append(lr.rsquared_adj)
# 系数字典转化为数据框,并按日期升序排序
coef = pd.DataFrame.from_dict(coef, orient='index')
coef = coef.sort_index(ascending=True)
# 系数pvalue转化为数据框,并按日期升序排序
coef_pvalue = pd.DataFrame.from_dict(coef_pvalue, orient='index')
coef_pvalue = coef_pvalue.sort_index(ascending=True)
# R2转化为数据框,并按日期升序排序
r2 = pd.DataFrame.from_dict(r2, orient='index')
r2.columns = ['R_squred','R_squred_adj']
r2 = r2.sort_index(ascending=True)
return coef, coef_pvalue, r2
def _dateTransfer(self, date):
'''
定义日期转换函数。
参数
----
date : str
需要转换的日期数据。
return
------
date : datetime
日期。
'''
return parser.parse(date).strftime('%Y-%m-%d')
def fit(self, feat_selected=None):
'''
多元回归分析并保存数据。
参数
----
feat_selected : list, 默认是None
分析用的特征列表。
return
------
coef_ : dataframe
回归系数。
coef_pvalue_ : dataframe
回归系数pvalue。
r2_ : dataframe
回归模型Rsquared 和 Rsquared_adj。
'''
if feat_selected is not None:
df = pd.concat([self.df_.iloc[:, 0], self.df_[feat_selected]], axis=1)
else:
df = self.df_
# 滚动回归分析
self.coef_, self.coef_pvalue_, self.r2_ = self.rollingOLS(df)
# 存储分析数据表
self.coef_.to_excel('coef.xlsx')
self.coef_pvalue_.to_excel('coef_pvalue.xlsx')
self.r2_.to_excel('r2.xlsx')
return self
def coefPlots(self, width_subplot=12, height_subplot=5, columns_subplots=3):
'''
画滚动回归系数及pvalue图。
参数
----
width_subplot : int
子图宽度。
height_subplot : int
子图高度。
columns_subplots : int
子图列数。
'''
num_subplots = self.coef_.shape[1] + 1 # 确定子图个数
# 确定子图行数
if num_subplots % columns_subplots == 0: # 余数为0
rows_subplots = num_subplots // columns_subplots # 取整
else:
rows_subplots = num_subplots // columns_subplots + 1
# 确定画布宽、高
width_figure = columns_subplots * width_subplot
height_figure = rows_subplots * height_subplot
# 绘制滚动回归R2图
plt.figure(figsize=(width_figure, height_figure))
plt.subplot(rows_subplots, columns_subplots, 1)
plt.plot(self.r2_['R_squred'], color='r', lw=3, label='R_squred')
plt.plot(self.r2_['R_squred_adj'], color='g', lw=3, label='R_squred_adj')
plt.title('R2')
plt.legend()
# 在子图中画系滚动回归系数及p值图
for i, feature in enumerate(self.coef_.columns): # 系数图
plt.subplot(rows_subplots, columns_subplots, i+2)
plt.plot(self.coef_[feature], color='red', lw=3, label='Beta')
for t, pvalue in zip(self.coef_pvalue_.index, self.coef_pvalue_[feature]): # p值图
if pvalue <= self.p_value_threshold:
plt.vlines(t, ymin=np.min(self.coef_[feature]), ymax=np.max(self.coef_[feature]),
color='green', alpha=.3, lw=5, label='p_value')
#plt.xlabel('日期')
if ((i + columns_subplots + 1) % columns_subplots) & (i > 0) == 0:
plt.ylabel('coef')
plt.title(feature, fontproperties=zh_font)
# plt.savefig('rollingRegression.jpeg') # 保存图片
plt.show()
return self
def coefEcharts(self):
'''
利用Echarts画图。
注:因为没有vline方法,故用echarts画出的图文件过大,在浏览器中打开很慢。
参数
----
return
------
echarts_page_ : echarts_page
echarts_page 文件。
'''
self.echarts_page_ = Page(self.response + '回归分析')
charts = []
zeros = np.zeros(self.coef_.shape[0])
line = Line('R2') # R2图
bar = Bar()
line.add('R_squred', self.r2_.index, self.r2_['R_squred'], is_more_utils=True)
line.add('R_squred_adj', self.r2_.index, self.r2_['R_squred_adj'], is_more_utils=True)
charts.append(line)
for i, feature in enumerate(self.coef_.columns):
min_num = np.min(self.coef_[feature])
max_num = np.max(self.coef_[feature])
line = Line(feature)
bar = Bar()
ol = Overlap()
line.add('coef', self.coef_.index, self.coef_[feature], is_more_utils=True) # 系数图
#line.on()
for t, pvalue in zip(self.coef_pvalue_.index, self.coef_pvalue_[feature]): # p值图
if pvalue <= self.p_value_threshold:
min_array, max_array = copy.deepcopy(zeros), copy.deepcopy(zeros)
min_array[self.coef_.index==t] = min_num
max_array[self.coef_.index==t] = max_num
bar.add('p-value', self.coef_.index, min_array)
bar.add('p-value', self.coef_.index, max_array)
ol.add(line)
ol.add(bar)
charts.append(ol)
self.echarts_page_.add(charts)
self.echarts_page_.render() # 保存格式为HTML, 保存地址为设定的全局path
return self
RollingRegression(滚动回归分析)之Python实现的更多相关文章
- python书籍推荐:量化投资:以Python为工具
所属网站分类: 资源下载 > python电子书 作者:mimi 链接:http://www.pythonheidong.com/blog/article/451/ 来源:python黑洞网 内 ...
- Ubuntu 16.04: How to install OpenCV
参考:https://www.pyimagesearch.com/2016/10/24/ubuntu-16-04-how-to-install-opencv/ 步骤# 1:安装opencv的依赖项 本 ...
- 回归分析特征选择(包括Stepwise算法) python 实现
# -*- coding: utf-8 -*-"""Created on Sat Aug 18 16:23:17 2018 @author: acadsoc"& ...
- python回归分析五部曲
Python回归分析五部曲(一)—简单线性回归 https://blog.csdn.net/jacky_zhuyuanlu/article/details/78878405?ref=myread Py ...
- 个股与指数的回归分析(自带python ols 参数解读)
sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...
- 利用Spark-mllab进行聚类,分类,回归分析的代码实现(python)
Spark作为一种开源集群计算环境,具有分布式的快速数据处理能力.而Spark中的Mllib定义了各种各样用于机器学习的数据结构以及算法.Python具有Spark的API.需要注意的是,Spark中 ...
- $用python玩点有趣的数据分析——一元线性回归分析实例
Refer:http://python.jobbole.com/81215/ 本文参考了博乐在线的这篇文章,在其基础上加了一些自己的理解.其原文是一篇英文的博客,讲的通俗易懂. 本文通过一个简单的例子 ...
- Python selenium chrome打包exe后禁用控制台输出滚动日志
Python selenium chrome打包exe后,在运行的过程中,如果遇到需要input()输入时,会发现被不断滚动刷新的日志把命令行输入快速顶掉了,通过查阅资料不断实践,发现以下方法有效: ...
- (转)python中用logging实现日志滚动和过期日志删除
转自:https://blog.csdn.net/ashi198866/article/details/46725813 logging库提供了两个可以用于日志滚动的class(可以参考https:/ ...
随机推荐
- logstash 和filebeat 是什么关系
因为logstash是jvm跑的,资源消耗比较大,所以后来作者又用golang写了一个功能较少但是资源消耗也小的轻量级的logstash-forwarder.不过作者只是一个人,加入http://el ...
- curl --resolve 查看证书情况
通过curl 解析证书 [root@harbor ~]# curl --resolve 'www.abc.com:127.0.0.1' https://www.abc.com/ -vvv * Cou ...
- 微信小程序,内容组件中兼容的H5组件
受信任的HTML节点及属性 全局支持class和style属性,不支持id属性. 节点 属性 a abbr address article aside b bdi bdo ...
- asp.net编程基础
vs常用两个快捷键:打开即时窗口 ctrl+alt+i : 快速代码格式排版:ctrl+k+d 一:Page:页面 Page.IsPostBack 判断页面是否第一次加载用 if(Page.IsPo ...
- git实现码云的上传和下载
上传步骤: 1.码云上新建一个项目 XXXX? ?(项目名) 2.本地创建一个文件夹E:/XXXX,然后使用git bash? ?? 3.cd 到本地文件夹中E:/XXXX? //如果是在创建的文件中 ...
- Jenkins+maven+gitlab自动化部署之docker发布sprint boot项目(七)
Jenkins发布docker应用与发布java应用配置基本一致,需要配置Dockerfile及构建的步骤,步骤如下: 1.jenkins主机构建应用为jar包 2.jenkins主机把生产的jar包 ...
- springmvc 拦截器与用户验证token
1:springmvc 配置文件中添加拦截器,当然首先要有拦截后交给哪个类处理也要写上 <mvc:interceptors> <mvc:interceptor> <mvc ...
- Java基础笔试练习(二)
1. HashMap的数据结构是怎样的? A.数组 B.链表 C.数组+链表 D.二叉树 答案: C 解析: JDK8以后,HashMap的数据结构是数组+链表+红黑树 2. 在 JAVA 编程中,J ...
- Win10 将本地连接设置为按流量计费网络
在Win10中默认是不允许用户将本地连接设置为按流量计费网络的,不过我们可以通过修改注册表的方式来实现. 将本地连接设置为按流量计费网络后,Windows更新将不会自动下载.同样,Windows应用商 ...
- centos 6.10 oracle 19c安装
centos 7以下版本安装oracle 19c 问题较多,centos 以上版本没有任何问题.记录如下. hosts文件,否则图形界面无法启动 127.0.0.1 localhost localho ...