此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面。对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献。有一些刚刚出版的文章,个人非常喜欢,也列出来了。

33. SIFT
关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了。SURF和PCA-SIFT也是属于这个系列。后面列出了几篇跟SIFT有关的问题。
[1999 ICCV] Object recognition from local scale-invariant features
[2000 IJCV] Evaluation of Interest Point Detectors
[2006 CVIU] Speeded-Up Robust Features (SURF)
[2004 CVPR] PCA-SIFT A More Distinctive Representation for Local Image Descriptors
[2004 IJCV] Distinctive Image Features from Scale-Invariant Keypoints
[2010 IJCV] Improving Bag-of-Features for Large Scale Image Search
[2011 PAMI] SIFTflow Dense Correspondence across Scenes and its Applications

翻译

SIFT跨场景流密对应及其应用——http://tongtianta.site/paper/29572

作者:

摘要 -

Computer Vision_33_SIFT:SIFTflow Dense Correspondence across Scenes and its Applications——2011的更多相关文章

  1. Computer Vision_33_SIFT:TILDE: A Temporally Invariant Learned DEtector——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  2. Computer Vision_33_SIFT:SAR-SIFT: A SIFT-LIKE ALGORITHM FOR SAR IMAGES——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. Computer Vision_33_SIFT:Distinctive Image Features from Scale-Invariant Keypoints——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  4. Computer Vision_33_SIFT:PCA-SIFT A More Distinctive Representation for Local Image Descriptors——2004

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  5. Computer Vision_33_SIFT:Speeded-Up Robust Features (SURF)——2006

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  6. Computer Vision_33_SIFT:Object recognition from local scale-invariant features——1999

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  7. Computer Vision_33_SIFT: A novel point-matching algorithm based on fast sample consensus for image registration——2015

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  8. Computer Vision_33_SIFT:Fast Adaptive Bilateral Filtering——2018

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  9. Computer Vision_33_SIFT:A novel coarse-to-fine scheme for automatic image registration based on SIFT and mutual information——2014

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

随机推荐

  1. LeetCode_121. Best Time to Buy and Sell Stock

    121. Best Time to Buy and Sell Stock Easy Say you have an array for which the ith element is the pri ...

  2. 配置Apache控制浏览器端的缓存的有效期

    这个非常有用的优化,mod_expires可以减少20-30%左右的重复请求,让重复的用户对指定的页面请求结果都CACHE在本地,根本不向服务器发出请求.但要注意更新快的文件不要这么做.这个模块控制服 ...

  3. ubuntu18.04下eclipse修改maven源为阿里源

    下载安装Java和Eclipse:https://www.cnblogs.com/zifeiy/p/9030111.html 然后命令行安装Maven(不是必须的): sudo apt-get ins ...

  4. iOS-CGAffineTransform相关函数

    CGAffineTransform相关函数 CGAffineTransformMakeTranslation(width, 0.0);是改变位置的,CGAffineTransformRotate(tr ...

  5. 【c# 学习笔记】索引器

    当一个类包含数组成员时,索引器 的使用将大大地简化对类中数组成员的访问.索引器的定义类似于属性,也具有GET访问器和set访问器,如下: [修饰符] 数据类型 this[索引类型 index] { g ...

  6. hfile.block.cache.size - hbase调优

    1.一个regionserver上有一个blockcache和N个memstore,它们的大小之和必须小于heapsize* 0.8,否则hbase不能启动,因为仍然要留有一些内存保证其它任务的执行. ...

  7. IO-file-07 递归

    package com.bwie.io; /** * 递归: * 方法自己调用自己 * 递归头:何时结束递归 * 递归体:重复调用 * @author Allen17805272076 * */ pu ...

  8. VLAN之间通信-三层交换机实现

    1.打开三层交换机的命令行,配置VLAN和设置端口IP enable //进入特权模式 configure terminal //进入全局配置模式 ip routing //启动交换机的路由功能 vl ...

  9. python学习-25 函数递归

    递归 例如: def abc(n): print(n) if int(n/2) == 0: return n return abc(int(n/2)) abc(10) 运行结果: 10 5 2 1 P ...

  10. Python 【收发邮件】

    发邮件 smtplib模块主要负责发送邮件 email模块主要负责构造邮件.这两个都是Python内置模块 smtplib.SMTP.方法 #按住Ctrl键并点击SMTP ,会看到对SMTP的解释(v ...