约数

一.概念

约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。

二.性质

1.整数唯一分解

1)定义

  对于任意一个正整数N,都有 N=p1c1*p2c2...pmcm,其中p为质数。

2)正约数集合

   ={p1b1*p2b2*...pmbm|0<=bi<=ci}

   3)正约数的和

   f(n)=(p1^0+p1^1+p1^2+…p1^a1)(p2^0+p2^1+p2^2+…p2^a2)…(pk^0+pk^1+pk^2+…pk^ak)

   4)正约数的个数

   =(c1+1)(c2+1)...(cm+1)

三.算法

  1.正约数集合

    1)试除法。一个一个试看能否被整除。推论:N的约数个数最多为2√N个

  2.1~N中所有数字的正约数

    1)试除

    2)基本推论:i一定是i的倍数的约数

for(int i=;i<=n;++i){
for(int j=;j<=n/i;++j){
fac[i*j].push_back(i);
}
}

     时间复杂度NlnN

    3)例题1 反质数 题解

     例题2 余数之和 题解

欧拉函数

一.概念

  对正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目(因此φ(1)=1)。此函数以其首名研究者欧拉命名(Euler's totient function)

二.性质

  1)求欧拉函数   

    (其中p1, p2……pn为x的所有质因数,x是不为0的整数)

  2)推导欧拉函数

    对于素数p

    当p|n时 φ(p*n)=φ(n)*p

    否则 φ(p*n)=φ(n)*(p-1)

  3)φ(p)=p-1 p为素数

[学习笔记]约数&欧拉函数的更多相关文章

  1. POJ 2480 (约数+欧拉函数)

    题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...

  2. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  3. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  4. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  5. 五校联考 running (欧拉函数)

    题面 \(solution:\) 讲真吧,这道题真的出得,嗯,太恐怖了.考场上这道题真的把我看懵了,这道题以前是见过的,但欧拉函数?我学过吗?一道容斥都要超时的题目,我都要为我自己点根香了,拿着gcd ...

  6. POJ_2478 Farey Sequence 【欧拉函数+简单递推】

    一.题目 The Farey Sequence Fn for any integer n with n >= 2 is the set of irreducible rational numbe ...

  7. (转载)O(N)的素数筛选法和欧拉函数

    转自:http://blog.csdn.net/dream_you_to_life/article/details/43883367 作者:Sky丶Memory 1.一个数是否为质数的判定. 质数,只 ...

  8. [组合数学] 圆排列和欧拉函数为啥有关系:都是polya定理的锅

    本文是一个笨比学习组合数学的学习笔记,因为是笨比,所以写的应该算是很通俗易懂了. 首先,我们考虑这么一个问题:你有无穷多的\(p\)种颜色的珠子,现在你想要的把他们中的\(n\)个以圆形的形状等间距的 ...

  9. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

随机推荐

  1. 栈习题(1)-对于任意的无符号的的十进制数m,写出将其转换为十六进制整数的算法(正确输出即可)

    /*对于任意的无符号的的十进制数m,写出将其转换为十六进制整数的算法(正确输出即可)*/ /* 算法思想:利用辗转取余法,每次都将余数存入栈中,直到被除数等0,退出循环. 输出栈里的内容即可 */ v ...

  2. xxx商城之商品管理

  3. [LOJ2002] [SDOI2017] 序列计数

    题目链接 LOJ:https://loj.ac/problem/2002 洛谷:https://www.luogu.org/problemnew/show/P3702 Solution 考虑补集转换, ...

  4. c# webapi 过滤器token、sign认证、访问日志

    1.token认证 服务端登录成功后分配token字符串.记录缓存服务器,可设置有效期 var token = Guid.NewGuid().ToString().Replace("-&qu ...

  5. helm chart应用使用示例

    有两种方法 一是按照正常流程直接用yaml文件的形式发布应用到k8s集群上 二是把生成好的yaml文件发布到kubeapps应用商店,在应用商店中操作发布应用到k8s集群中 这里采用第二种方式的变种方 ...

  6. CCF 2016-12-1 中间数

    CCF 2016-12-1 中间数 题目 问题描述 在一个整数序列a1, a2, -, an中,如果存在某个数,大于它的整数数量等于小于它的整数数量,则称其为中间数.在一个序列中,可能存在多个下标不相 ...

  7. JSON C# Class Generator

    http://www.xamasoft.com/json-class-generator/ JsonHelper.cs using System; using System.Collections.G ...

  8. MySQL数据库连接报错

    数据库版本8.x和其他版本配置有区别: 1. 驱动依赖和连接 报错: Could not create connection to database server - java mysql conne ...

  9. ASP.NET 一般处理程序 接收文件上传

    public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain&qu ...

  10. springboot实现读写分离(基于Mybatis,mysql)

    近日工作任务较轻,有空学习学习技术,遂来研究如果实现读写分离.这里用博客记录下过程,一方面可备日后查看,同时也能分享给大家(网上的资料真的大都是抄来抄去,,还不带格式的,看的真心难受). 完整代码:h ...