In a given integer array A, we must move every element of A to either list B or list C. (B and C initially start empty.)

Return true if and only if after such a move, it is possible that the average value of B is equal to the average value of C, and B and C are both non-empty.

Example :
Input:
[1,2,3,4,5,6,7,8]
Output: true
Explanation: We can split the array into [1,4,5,8] and [2,3,6,7], and both of them have the average of 4.5.

Note:

  • The length of A will be in the range [1, 30].
  • A[i] will be in the range of [0, 10000].

给一个数组A,把A中的每一个元素都移到数组B或C中(B, C初始为空)。如果移动后可以使B和C的均值相等,则返回ture。其实就是将一个数组分成两部分,每部分的平均值相同。

题目的关键点是:当能拆分成两个平均值相等的数组时,拆分的数组和原来数组的平均值是相同的。因此问题转换为,先算出A的平均值A_aver,如果A中的数组成的子数组B的平均值等于A_aver,再去判断剩余的数组成的数组C的平均值是否和A_aver相等。

The key thing of this problem is, when we are able to make a same average split, the average of each splitted array is the same as the average of the whole array.
So the problem can be transformed into a simpler one: given a target number (tosum), can we construct it using a specific number (lenB) of integers in a list(A).
Then we can try every possible numbers of lenB, to see whether any one is feasible.

If the array of size n can be splitted into group A and B with same mean, assuming A is the smaller group, then

totalSum/n = Asum/k = Bsum/(n-k), where k = A.size() and 1 <= k <= n/2;
Asum = totalSum*k/n, which is an integer. So we have totalSum*k%n == 0;

如果一个长度为n的数组可以被划分为A和B两个数组,假设A的长度小于B并且A的大小是k,那么:total_sum / n == A_sum / k == B_sum / (n - k),其中1 <= k <= n / 2。可得出:A_sum = total_sum * k / n。由于A_sum一定是个整数,所以可以推导出total_sum * k % n == 0,那就是说,对于特定的total_sum和n而言,符合条件的k不会太多。首先验证是否存在符合条件的k,如果不存在就可以提前返回false。

解法1: early pruning + knapsack DP, O(n^3 * M)

如果经过第一步的验证,发现确实有符合条件的k,那么我们在第二步中,就试图产生k个子元素的所有组合,并且计算他们的和。这里的思路就有点类似于背包问题了,我们的做法是:定义vector<vector<unordered_set<int>>> sums,其中sums[i][j]表示A[0, i]这个子数组中的任意j个元素的所有可能和。可以得到递推公式是:sums[i][j] = sums[i - 1][j] "join" (sums[i][j - 1] + A[i]),其中等式右边的第一项表示这j个元素中不包含A[i],而第二项表示这j个元素包含A[i]。这样就可以采用动态规划的思路得到sums[n - 1][k]了(1 <= k <= n / 2)。

有了sums[n - 1][k],我们就检查sums[n - 1][k]中是否包含(total_sum * k / n)。一旦发现符合条件的k,就返回true,否则就返回false。

If there are still some k valid after early pruning by checking totalSum*k%n == 0,
we can generate all possible combination sum of k numbers from the array using DP, like knapsack problem. (Note: 1 <= k <= n/2)
Next, for each valid k, simply check whether the group sum, i.e. totalSum * k / n, exists in the kth combination sum hashset.

vector<vector<unordered_set<int>>> sums(n, vector<unordered_set<int>>(n/2+1));
sums[i][j] is all possible combination sum of j numbers from the subarray A[0, i];
Goal: sums[n-1][k], for all k in range [1, n/2]
Initial condition: sums[i][0] = {0}, 0 <= i <= n-1; sums[0][1] = {all numbers in the array};
Deduction: sums[i+1][j] = sums[i][j] "join" (sums[i][j-1] + A[i+1])
The following code uses less space but the same DP formula.
Runtime analysis:
All numbers in the array are in range [0, 10000]. Let M = 10000.
So the size of kth combination sum hashset, i.e. sums[...][k], is <= k * M;
For each number in the array, the code need loop through all combination sum hashsets, so
the total runtime is n * (1 * M + 2 * M + ... + (n/2) * M) = O(n^3 * M)

解法2: TLE, For such k, the problem transforms to "Find k sum = Asum, i.e. totalSum * k/n, from an array of size n". This subproblem is similar to LC39combination sum, which can be solved by backtracking.

Python:

class Solution(object):
def splitArraySameAverage(self, A):
if len(A)==1: return False
global_avg = sum(A)/float(len(A))
for lenB in range(1, len(A)/2+1):
if int(lenB*global_avg) == lenB*global_avg:
if self.exist(lenB*global_avg, lenB, A):
return True
return False def exist(self, tosum, item_count, arr):
if item_count==0:
return False if tosum else True
if item_count > len(arr) or not arr:
return False
if any([self.exist(tosum-arr[0], item_count-1, arr[1:]),
self.exist(tosum, item_count, arr[1:])]):
return True
return False 

Python:

# Time:  O(n^4)
# Space: O(n^3)
class Solution(object):
def splitArraySameAverage(self, A):
"""
:type A: List[int]
:rtype: bool
"""
def possible(total, n):
for i in xrange(1, n//2+1):
if total*i%n == 0:
return True
return False
n, s = len(A), sum(A)
if not possible(n, s):
return False sums = [set() for _ in xrange(n//2+1)];
sums[0].add(0)
for num in A: # O(n) times
for i in reversed(xrange(1, n//2+1)): # O(n) times
for prev in sums[i-1]: # O(1) + O(2) + ... O(n/2) = O(n^2) times
sums[i].add(prev+num)
for i in xrange(1, n//2+1):
if s*i%n == 0 and s*i//n in sums[i]:
return True
return False  

C++: 1

class Solution {
public:
bool splitArraySameAverage(vector<int>& A) {
int n = A.size(), m = n/2, totalSum = accumulate(A.begin(), A.end(), 0);
// early pruning
bool isPossible = false;
for (int i = 1; i <= m && !isPossible; ++i)
if (totalSum*i%n == 0) isPossible = true;
if (!isPossible) return false;
// DP like knapsack
vector<unordered_set<int>> sums(m+1);
sums[0].insert(0);
for (int num: A) {
for (int i = m; i >= 1; --i)
for (const int t: sums[i-1])
sums[i].insert(t + num);
}
for (int i = 1; i <= m; ++i)
if (totalSum*i%n == 0 && sums[i].find(totalSum*i/n) != sums[i].end()) return true;
return false;
}
};  

C++: 1

class Solution {
public:
bool splitArraySameAverage(vector<int>& A) {
int n = A.size(), m = n / 2;
int totalSum = accumulate(A.begin(), A.end(), 0);
// early pruning
bool isPossible = false;
for (int i = 1; i <= m; ++i) {
if (totalSum * i % n == 0) {
isPossible = true;
break;
}
}
if (!isPossible) {
return false;
}
// DP like knapsack
vector<unordered_set<int>> sums(m + 1);
sums[0].insert(0);
for (int num: A) { // for each element in A, we try to add it to sums[i] by joining sums[i - 1]
for (int i = m; i >= 1; --i) {
for (const int t: sums[i - 1]) {
sums[i].insert(t + num);
}
}
}
for (int i = 1; i <= m; ++i) {
if (totalSum * i % n == 0 && sums[i].find(totalSum * i / n) != sums[i].end()) {
return true;
}
}
return false;
}
};  

C++: 2 TLE

class Solution {
public:
bool splitArraySameAverage(vector<int>& A) {
int n = A.size(), m = n/2, totalSum = accumulate(A.begin(), A.end(), 0);
sort(A.rbegin(), A.rend()); // Optimization
for (int i = 1; i <= m; ++i)
if (totalSum*i%n == 0 && combinationSum(A, 0, i, totalSum*i/n)) return true;
return false;
}
bool combinationSum(vector<int>& nums, int idx, int k, int tar) {
if (tar > k * nums[idx]) return false; // Optimization, A is sorted from large to small
if (k == 0) return tar == 0;
for (int i = idx; i <= nums.size()-k; ++i)
if (nums[i] <= tar && combinationSum(nums, i+1, k-1, tar-nums[i])) return true;
return false;
}
};

  

All LeetCode Questions List 题目汇总

[LeetCode] 805. Split Array With Same Average 用相同均值拆分数组的更多相关文章

  1. 805. Split Array With Same Average

    In a given integer array A, we must move every element of A to either list B or list C. (B and C ini ...

  2. [LeetCode] Split Array With Same Average 分割数组成相同平均值的小数组

    In a given integer array A, we must move every element of A to either list B or list C. (B and C ini ...

  3. [Swift]LeetCode805. 数组的均值分割 | Split Array With Same Average

    In a given integer array A, we must move every element of A to either list B or list C. (B and C ini ...

  4. [LeetCode] 659. Split Array into Consecutive Subsequences 将数组分割成连续子序列

    You are given an integer array sorted in ascending order (may contain duplicates), you need to split ...

  5. [LeetCode] 410. Split Array Largest Sum 分割数组的最大值

    Given an array which consists of non-negative integers and an integer m, you can split the array int ...

  6. [LeetCode] 548. Split Array with Equal Sum 分割数组成和相同的子数组

    Given an array with n integers, you need to find if there are triplets (i, j, k) which satisfies fol ...

  7. LeetCode 548. Split Array with Equal Sum (分割数组使得子数组的和都相同)$

    Given an array with n integers, you need to find if there are triplets (i, j, k) which satisfies fol ...

  8. leetcode 659. Split Array into Consecutive Subsequences

    You are given an integer array sorted in ascending order (may contain duplicates), you need to split ...

  9. LeetCode 842. Split Array into Fibonacci Sequence

    原题链接在这里:https://leetcode.com/problems/split-array-into-fibonacci-sequence/ 题目: Given a string S of d ...

随机推荐

  1. requireJS的基本使用

    requireJS的基本使用 一.总结 一句话总结: requireJS是js端模块化开发,主要是实现js的异步加载,和管理模块之间的依赖关系,便于代码的编写和维护 1.页面加载的js文件过多的缺点是 ...

  2. 51nod 2500 后面第一个大于

    小b有一个长度为n的序列t,现在她对于每个i,求最小的正数j满足i+j≤ni+j≤n且ti+j>titi+j>ti,输出j,如果不存在这样的j,则输出0. 样例解释: 对于i=1,t2&g ...

  3. Java并发包--ConcurrentSkipListSet

    https://www.cnblogs.com/kexianting/p/8550459.html import java.util.concurrent.ConcurrentLinkedQueue; ...

  4. 使用SecureCRT操作linux系统时候的简单设置

    因为第一次访问一台虚拟机的时候会出现这样的情况;   底色为白色和乱码的情况 需要在选项----->会话选项中进行一些设置 用来解决乱码问题的这个设置为:

  5. solr和ElasticSearch(ES)的区别?

    Solr2004年诞生 ElasticSearch 2010年诞生 ES更新 ElasticSearch简介: ElasticSearch是一个实时的分布式的搜索引擎和分析引擎.它可以帮助你用前所未有 ...

  6. T-sql 遍历结果集

    DECLARE @TAB TABLE( [科室编号] [varchar](50) NULL, [科室编码] [varchar](50) NULL, [科室名称] [varchar](50) NULL, ...

  7. 转:MySQL到底能支持多大的数据量?

    MySQL到底能支持多大的数据量? MySQL是中小型网站普遍使用的数据库之一,然而,很多人并不清楚MySQL到底能支持多大的数据量,再加上某些国内CMS厂商把数据承载量的责任推给它,导致很多不了解M ...

  8. 数据库jdbc链接:mysql, oracle, postgresql

    #db mysql#jdbc.driver=com.mysql.jdbc.Driver#jdbc.url=jdbc:mysql://localhost:3306/mysql?&useUnico ...

  9. SpringMVC_原理(转)

    在整个Spring MVC框架中,DispatcherServlet处于核心位置,它负责协调和组织不同组件完成请求处理并返回响应的工作.具体流程为:1)客户端发送http请求,web应用服务器接收到这 ...

  10. C# Base64字符串生成图片

    C# Base64字符串生成图片: //签字图片Base64格式去除开头多余字符data:image/png;base64, strSignImg = strSignImg.Substring(str ...