SegNet
Paper link:https://arxiv.org/pdf/1511.00561.pdf
Motivation:为了实际应用,主要是在时间效率和存储空间上做了改进;
Introduction:
(1)Pipeline:
(2)Light
1、带index的pooling:
在SegNet中的Pooling与其他Pooling多了一个index功能(该文章亮点之一),也就是每次Pooling,都会保存通过max选出的权值在2x2 filter中的相对位置,对于上图的6来说,6在粉色2x2 filter中的位置为(1,1)(index从0开始),黄色的3的index为(0,0)。同时,从网络框架图可以看到绿色的pooling与红色的upsampling通过pool indices相连,实际上是pooling后的indices输出到对应的upsampling(因为网络是对称的,所以第1次的pooling对应最后1次的upsamping,如此类推)。
Upsamping就是Pooling的逆过程(index在Upsampling过程中发挥作用),Upsamping使得图片变大2倍。我们清楚的知道Pooling之后,每个filter会丢失了3个权重,这些权重是无法复原的,但是在Upsamping层中可以得到在Pooling中相对Pooling filter的位置。所以Upsampling中先对输入的特征图放大两倍,然后把输入特征图的数据根据Pooling indices放入,下图所示,Unpooling对应上述的Upsampling,switch variables对应Pooling indices。
如下图:
pooling&Upsampling示意图中右边的Upsampling可以知道,2x2的输入,变成4x4的图,但是除了被记住位置的Pooling indices,其他位置的权值为0,因为数据已经被pooling走了。因此,SegNet使用的反卷积在这里用于填充缺失的内容,因此这里的反卷积与卷积是一模一样,在网络框架图中跟随Upsampling层后面的是也是卷积层。
2、为结果加入置信度(Bayesian SegNet):
需要多次采样才能确定一个分布。蒙特卡罗抽样告诉我们可以通过设计一个试验方法将一个事件的频率转化为概率,因为在足够大的样本中,事件发生的频率会趋向事件发生的概率,因此可以很方便地求出一个未知分布。通过蒙特卡罗抽样,就可以求出一个新分布的均值与方差,这样使用方差大小就可以知道一个分布对于样本的差异性,我们知道方差越大差异越大。
在Bayesian SegNet中通过DropOut层实现多次采样(),多次采样的样本值为最后输出,方差最为其不确定度,方差越大不确定度越大,如图6所示,mean为图像语义分割结果,var为不确定大小。所以在使用Bayesian SegNet预测时,需要多次向前传播采样才能够得到关于分类不确定度的灰度图,Bayesian SegNet预测如下图所示。
第一行为输入图像,第二行为ground truth,第三行为Bayesian SegNet语义分割输出,第四行为不确定灰度图。可以看到,
1.对于分类的边界位置,不确定性较大,即其置信度较低。
2.对于图像语义分割错误的地方,置信度也较低。
3.对于难以区分的类别,例如人与自行车,road与pavement,两者如果有相互重叠,不确定度会增加。
(3)Result:
可以达到和FCN相似的效果,但是存储利用率更高;
SegNet的更多相关文章
- 【Keras】基于SegNet和U-Net的遥感图像语义分割
上两个月参加了个比赛,做的是对遥感高清图像做语义分割,美其名曰"天空之眼".这两周数据挖掘课期末project我们组选的课题也是遥感图像的语义分割,所以刚好又把前段时间做的成果重新 ...
- SegNet 理解与文章结构
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation 发表于2016年,作者 Vijay B ...
- AI SegNet
SegNet,是一种基于编码器-解码器架构的深度全卷积神经网络,用于图像语义分割. 参考链接: https://ieeexplore.ieee.org/document/7803544
- 论文阅读笔记八:SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation (IEEE2017)
原文链接:https://arxiv.org/pdf/1511.00561.pdf github(tensorflow):https://github.com/aizawan/segnet 基于Seg ...
- 比较语义分割的几种结构:FCN,UNET,SegNet,PSPNet和Deeplab
简介 语义分割:给图像的每个像素点标注类别.通常认为这个类别与邻近像素类别有关,同时也和这个像素点归属的整体类别有关.利用图像分类的网络结构,可以利用不同层次的特征向量来满足判定需求.现有算法的主要区 ...
- 【Network Architecture】SegNet论文解析(转)
文章来源: https://blog.csdn.net/fate_fjh/article/details/53467948 Introduction 自己制作国内高速公路label,使用SegNet训 ...
- segnet 编译与测试
segnet 编译与测试参考:http://sunxg13.github.io/2015/09/10/caffe/http://m.blog.csdn.net/lemianli/article/det ...
- 语义分割(semantic segmentation) 常用神经网络介绍对比-FCN SegNet U-net DeconvNet,语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类;目标检测只有两类,目标和非目标,就是在一张图片中找到并用box标注出所有的目标.
from:https://blog.csdn.net/u012931582/article/details/70314859 2017年04月21日 14:54:10 阅读数:4369 前言 在这里, ...
- 【Computer Vision】 复现分割网络(1)——SegNet
目录 Tags: ComputerVision 编译 数据处理 训练结果 Reference Tags: ComputerVision 编译 src/caffe/layers/contrastive_ ...
- 语义分割学习之SegNet的C++编译
Abstract 安装好Segnet并使用Python进行训练和测试之后,考虑项目的应用,需要在C++的工程环境下进行继续开发,所以这里的主要内容是用C++建立工程,使用相应的数据集和权重参数文件进行 ...
随机推荐
- JAVA读取XML并打印
在G盘下新建XML文档:person.xml,XML代码: <?xml version="1.0" encoding="utf-8"?> <s ...
- CF19D Points 平衡树
题意:支持插入/删除点 $(x,y)$,查询一个点右上方横坐标与之最接近的点坐标. 我们可以对于每一个操作过的横坐标都开一个 $set$,然后再开一个平衡树,维护每个横坐标上最大的纵坐标. 然后查询点 ...
- ERROR: `elasticsearch` directory is missing in the plugin zip
该问题出现在为elasticsearch安装中文分词器插件时 问题发生在插件和es版本不匹配~ 解决: es版本与插件版本对应齐 命令行安装 C:\Users\SeeClanUkyo>F:\el ...
- 开始编写Makefile(二)Makefile变量的使用
Makefile可以使用变量代替 命令行:make -f Makefile2 说明开始make一个名为Makefile2的文件 ###############定义变量################# ...
- 23、CacheManager原理剖析与源码分析
一.图解 二.源码分析 ###org.apache.spark.rdd/RDD.scalal ###入口 final def iterator(split: Partition, context: T ...
- Matlab画图的输出格式
利用Matlab命令,可以输出.eps, .pdf格式的图形.有时候,在图形窗口直接保存会导致图形不完整,这时,可以用如下命令代替: saveas(p1, 't1.eps'); saveas(p1, ...
- spark的一些基本概念和模型
Application application和Hadoop MapReduce类似,都是指用户编写的spark应用程序,其中包含了一个driver功能的代码和分布在集群中多个节点运行的executo ...
- k8s概念入门
k8s是一个编排容器的工具,其实也是管理应用的全生命周期的一个工具,从创建应用,应用的部署,应用提供服务,扩容缩容应用,应用更新,都非常的方便,而且可以做到故障自愈,例如一个服务器挂了,可以自动将这个 ...
- 利用iterm2,在命令行预览图片,服务器也是可以的
1.首先你本地电脑上要安装iterm2软件,我们这里使用brew安装 这个是一定要装的,因为能在命令行渲染出图片文件全靠它,其实不是服务器渲染出来的,而是iterm2 官方网站:https://www ...
- 2019全国大学生信息安全竞赛ciscn-writeup(4web)
web1-JustSoso php伪协议获取源码 ?file=php://filter/read=convert.base64-encode/resource=index.php index.php ...