bzoj2187

多组询问,每次给出 $a, b, c, d$,求满足 $\frac{a}{b}  < \frac{p}{q} < \frac{c}{d}$ 的所有二元组 $(p, q)$ 中 $p$ 为第一关键字,$q$ 为第二关键字排出来的字典序最小的那一对。

分析:

设计函数 $f(a,b,p,q,c,d)$.

按照题目中保证 $q$ 最小的要求考虑该函数的几个边界:

1. $\left \lfloor \frac{a}{b} \right \rfloor-1 \leq \left \lceil \frac{c}{d} \right \rceil-1$,这个时候 $p = \left \lfloor \frac{a}{b} \right \rfloor+1, q=1$ 时字典序最小

2. $a=0$ 时,这个时候 $0 < \frac{p}{q} < \frac{c}{d} \Rightarrow q > \frac{dp}{c}$,显然 $p=1, q=\left \lfloor \frac{c}{d} \right \rfloor+1$ 时字典序最小

然后考虑辗转相除缩小问题规模:

1. $a > b\ or \ c > d$:原式等价于:$\frac{a\%b}{b} < \frac{p}{q}-\left \lfloor \frac{a}{b} \right \rfloor < \frac{c}{d}-\left \lfloor \frac{a}{b} \right \rfloor$

即:$f(a, b, p, q, c,d) = f(a \% b, b, p, q, c-{\left \lfloor \frac{a}{b} \right \rfloor}d), p+= {\left \lfloor \frac{a}{b} \right \rfloor}q$.

2. $a \leq b \ and \ c \leq d$:原式等价于:$\frac{d}{c} < \frac{q}{p} < \frac{b}{a}$.

即:$f(a,b,p,q,c,d) = f(d,c,q,p,b,a)$,这样就回到了第一步。

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
ll a, b, c, d, p, q; inline ll gcd(ll a, ll b){while(b){ll t=a; a=b; b=t-t/a*a;} return a;}
inline void calc(ll& a, ll& b){ll d= gcd(a, b); a/=d; b /= d;}
inline void f(ll a, ll b, ll& p, ll& q, ll c, ll d)
{
//calc(a, b); calc(c, d); //可以不用
if(!a){p=; q=d/c+; return;}
ll x = a/b+, y = c/d+(c%d>)-;
if(x <= y){q=, p=x; return;}
if(a <= b && c <= d) f(d, c, q, p, b, a);
else{ f(a%b, b, p, q, c-a/b*d, d); p += a/b*q;}
} int main()
{
while(scanf("%lld%lld%lld%lld", &a, &b, &c, &d) == )
{
f(a, b, p, q, c, d);
printf("%lld/%lld\n", p, q);
}
return ;
}

hdu3637

给出两个非负有理数 $A, B$($A < B$),你的任务是发现一个分数介于A和B,在这个区间内可能有许多分数,请输出分子加分母和最小的分数。

分析:

首先,解决输入问题,无线循环小数很容易转换成分数。

因为0.[1]=1/9, 0.0[1]=1/99, 0.00[1]=1/999...

将小数分成括号部分和非括号部分即可。

问题转换成求 $\frac{a}{b} < \frac{p}{q} < \frac{c}{d}$,且 $p+q$ 最小。

可以推导出 $p$ 最小时,$p+q$ 就最小,于是套类欧几里得模板即可。

//交上去会MLE,不知道咋解决

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
ll a, b, c, d, p, q; inline ll gcd(ll a, ll b){while(b){ll t=a; a=b; b=t-t/a*a;} return a;}
inline void calc(ll& a, ll& b){ll d= gcd(a, b); a/=d; b /= d;}
inline void f(ll a, ll b, ll& p, ll& q, ll c, ll d)
{
//calc(a, b); calc(c, d); //可以不用
if(!a){p=; q=d/c+; return;}
ll x = a/b+, y = c/d+(c%d>)-;
if(x <= y){q=, p=x; return;}
if(a <= b && c <= d) f(d, c, q, p, b, a);
else{ f(a%b, b, p, q, c-a/b*d, d); p += a/b*q;}
} char s[];
void input(ll& a, ll& b)
{
scanf("%s", s);
int len = strlen(s);
ll tmp1 = , tmp2 = , flag = , is_point=, is_kh=, cnt1=, cnt2=;
for(int i = ;i < len;i++)
{
if(s[i] == ']') continue;
if(s[i] == '.'){is_point=;continue;}
if(s[i] == '['){is_kh=;continue;}
if(is_point&&!is_kh) cnt1 = cnt1*;
if(is_point) cnt2 = cnt2*+;
if((!is_kh)) tmp1 = tmp1* + (s[i]-'');
else tmp2 = tmp2* + (s[i]-'');
}
calc(tmp1, cnt1);
if(cnt2 == )
{
calc(tmp2, cnt2);
a = tmp1, b=cnt1;
}
else a = tmp1*cnt2+tmp2*cnt1, b=cnt1*cnt2;
if(!a) calc(a, b);
} int main()
{
int T, kase=;
scanf("%d", &T);
while(T--)
{
input(a, b);input(c, d);
//printf("%lld %lld %lld %lld\n", a, b, c, d);
f(a, b, p, q, c, d);
printf("Case %d: %lld/%lld\n", ++kase, p, q);
}
return ;
}

参考链接:

1. https://blog.csdn.net/dreaming__ldx/article/details/86769792

2. https://blog.csdn.net/hqd_acm/article/details/6648027

bzoj2187 fraction&&hdu3637 Find a Fraction——类欧几里得的更多相关文章

  1. [ZZOJ#31]类欧几里得

    [ZZOJ#31]类欧几里得 试题描述 这是一道模板题. 给出 \(a, b, c, n\),请你求出 \(\sum_{x=0}^n{\lfloor \frac{a \cdot x + b}{c} \ ...

  2. 算法马拉松35 E 数论只会Gcd - 类欧几里得 - Stern-Brocot Tree - 莫比乌斯反演

    题目传送门 传送门 这个官方题解除了讲了个结论,感觉啥都没说,不知道是因为我太菜了,还是因为它真的啥都没说. 如果 $x \geqslant y$,显然 gcd(x, y) 只会被调用一次. 否则考虑 ...

  3. 类欧几里得模板 p5170

    //类欧几里得的模板题 p5170 //求这三个式子: //第一个跟后两个没关联 //后两个跟其余两个都有关联: #include<cstdio> #include<algorith ...

  4. 2019HDU多校第五场A fraction —— 辗转相除法|类欧几里得

    题目 设 $ab^{-1} = x(mod \ p)$,给出 $x,p$,要求最小的 $b$,其中 $0< a < b, \ 1 < x<p,\ 3 \leq x\leq {1 ...

  5. 2019.02.06 bzoj2987: Earthquake(类欧几里得)

    传送门 题意简述:求满足ax+by+c≤0ax+by+c\le0ax+by+c≤0的二元组(x,y)(x,y)(x,y)对数. 思路: 类欧几里得算法模板题. 把式子变化一下变成:求满足0≤y≤−ax ...

  6. JZOJ3492数数&&GDOI2018超级异或绵羊——位&&类欧几里得

    JZOJ3492 数数(count) 我们知道,一个等差数列可以用三个数A,B,N表示成如下形式:  B+A,B+2A,B+3A⋯B+NA ztxz16想知道对于一个给定的等差数列,把其中每一项用二进 ...

  7. 2019牛客多校九 I. KM and M (类欧几里得)

    大意: 给定$N,M$, 求$\sum\limits_{K=1}^N \text{(KM)&M}$ 考虑第$i$位的贡献, 显然为$\lfloor\frac{KM}{2^i}\rfloor$为 ...

  8. Kattis - itsamodmodmodmodworld It's a Mod, Mod, Mod, Mod World (类欧几里得)

    题意:计算$\sum\limits_{i=1}^n[(p{\cdot }i)\bmod{q}]$ 类欧模板题,首先作转化$\sum\limits_{i=1}^n[(p{\cdot}i)\bmod{q} ...

  9. 2019.02.06 bzoj2187: fraction(类欧几里得)

    传送门 题意简述:多组询问,每次给出a,b,c,da,b,c,da,b,c,d,求满足ab<pq<cd\frac ab<\frac pq<\frac cdba​<qp​& ...

随机推荐

  1. loj 2719 「NOI2018」冒泡排序 - 组合数学

    题目传送门 传送门 题目大意 (相信大家都知道) 显然要考虑一个排列$p$合法的充要条件. 考虑这样一个构造$p$的过程.设排列$p^{-1}_{i}$满足$p_{p^{-1}_i} = i$. 初始 ...

  2. 通过欧拉计划学习Rust编程(第22~25题)

    最近想学习Libra数字货币的MOVE语言,发现它是用Rust编写的,所以先补一下Rust的基础知识.学习了一段时间,发现Rust的学习曲线非常陡峭,不过仍有快速入门的办法. 学习任何一项技能最怕没有 ...

  3. 在 QML 中使用 C++ 类和对象

    Qt Quick 技术的引入,使得你能够快速构建 UI ,具有动画.各种绚丽效果的 UI 都不在话下.但它不是万能的,也有很多局限性,原来 Qt 的一些技术,比如低阶的网络编程如 QTcpSocket ...

  4. SDK-基于Windows环境搭建

    SDK安装配置 前言:相信很多小伙伴还不会搭SDK,近日一位前同事询问我SDK怎么搭建了?不妨看看吧,小编是基于appium. 1.下载SDK:http://tools.android-studio. ...

  5. Navicat 连接远程数据库报错:1130 - Host "XX.XX.XX.XX" is not allowed to connect to this MySQL server

    Navicat 连接远程数据库报错:1130 - Host "XX.XX.XX.XX" is not allowed to connect to this MySQL server ...

  6. kubernetes使用阿里云cpfs持久存储

    目录 简介 安装cpfs客户端 kubernetes使用cfs作为持久存储 简介 cpfs的具体介绍可参考这里: https://help.aliyun.com/document_detail/111 ...

  7. Create GUID / UUID in JavaScript?

    Code function uuidv4() { return ([1e7]+-1e3+-4e3+-8e3+-1e11).replace(/[018]/g, c => (c ^ crypto.g ...

  8. java中 Math和StrictMath

    今天无意中看到java api中有StrictMath 这个工具类,发现它部分调用实现是用了Math中的实现.Math 这个类API 1.0版本就有了,StrictMath API是1.3版本才出来的 ...

  9. golang学习笔记 --go test

    Go语言拥有一套单元测试和性能测试系统,仅需要添加很少的代码就可以快速测试一段需求代码. go test 命令,会自动读取源码目录下面名为 *_test.go 的文件,生成并运行测试用的可执行文件.输 ...

  10. SpringBoot 通过jjwt快速实现token授权

    A 10分钟了解JSON Web令牌(JWT)https://baijiahao.baidu.com/s?id=1608021814182894637&wfr=spider&for=p ...