50、Spark Streaming实时wordcount程序开发
一、java版本
package cn.spark.study.streaming; import java.util.Arrays; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext; import scala.Tuple2; /**
* 实时wordcount程序
* @author Administrator
*
*/
public class WordCount { public static void main(String[] args) throws Exception {
// 创建SparkConf对象
// 但是这里有一点不同,我们是要给它设置一个Master属性,但是我们测试的时候使用local模式
// local后面必须跟一个方括号,里面填写一个数字,数字代表了,我们用几个线程来执行我们的
// Spark Streaming程序
SparkConf conf = new SparkConf()
.setMaster("local[2]")
.setAppName("WordCount"); // 创建JavaStreamingContext对象
// 该对象,就类似于Spark Core中的JavaSparkContext,就类似于Spark SQL中的SQLContext
// 该对象除了接收SparkConf对象对象之外
// 还必须接收一个batch interval参数,就是说,每收集多长时间的数据,划分为一个batch,进行处理
// 这里设置一秒
JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1)); // 首先,创建输入DStream,代表了一个从数据源(比如kafka、socket)来的持续不断的实时数据流
// 调用JavaStreamingContext的socketTextStream()方法,可以创建一个数据源为Socket网络端口的
// 数据流,JavaReceiverInputStream,代表了一个输入的DStream
// socketTextStream()方法接收两个基本参数,第一个是监听哪个主机上的端口,第二个是监听哪个端口
JavaReceiverInputDStream<String> lines = jssc.socketTextStream("localhost", 9999); // 到这里为止,你可以理解为JavaReceiverInputDStream中的,每隔一秒,会有一个RDD,其中封装了
// 这一秒发送过来的数据
// RDD的元素类型为String,即一行一行的文本
// 所以,这里JavaReceiverInputStream的泛型类型<String>,其实就代表了它底层的RDD的泛型类型 // 开始对接收到的数据,执行计算,使用Spark Core提供的算子,执行应用在DStream中即可
// 在底层,实际上是会对DStream中的一个一个的RDD,执行我们应用在DStream上的算子
// 产生的新RDD,会作为新DStream中的RDD
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() { private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String line) throws Exception {
return Arrays.asList(line.split(" "));
} }); // 这个时候,每秒的数据,一行一行的文本,就会被拆分为多个单词,words DStream中的RDD的元素类型
// 即为一个一个的单词 // 接着,开始进行flatMap、reduceByKey操作
// PairFunction<String, String, Integer> 第一个String是接受类型,后面的String Integer是返回类型
// JavaPairDStream<String, Integer>中的String Integer也是返回类型
JavaPairDStream<String, Integer> pairs = words.mapToPair( new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String word)
throws Exception {
return new Tuple2<String, Integer>(word, 1);
} }); // 这里,正好说明一下,其实大家可以看到,用Spark Streaming开发程序,和Spark Core很相像
// 唯一不同的是Spark Core中的JavaRDD、JavaPairRDD,都变成了JavaDStream、JavaPairDStream JavaPairDStream<String, Integer> wordCounts = pairs.reduceByKey( new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
} }); // 到此为止,我们就实现了实时的wordcount程序了
// 总结一下思路,加深一下印象
// 每秒钟发送到指定socket端口上的数据,都会被lines DStream接收到
// 然后lines DStream会把每秒的数据,也就是一行一行的文本,诸如hell world,封装为一个RDD
// 然后呢,就会对每秒中对应的RDD,执行后续的一系列的算子操作
// 比如,对lins RDD执行了flatMap之后,得到一个words RDD,作为words DStream中的一个RDD
// 以此类推,直到生成最后一个,wordCounts RDD,作为wordCounts DStream中的一个RDD
// 此时,就得到了,每秒钟发送过来的数据的单词统计
// 但是,一定要注意,Spark Streaming的计算模型,就决定了,我们必须自己来进行中间缓存的控制
// 比如写入redis等缓存
// 它的计算模型跟Storm是完全不同的,storm是自己编写的一个一个的程序,运行在节点上,相当于一个
// 一个的对象,可以自己在对象中控制缓存
// 但是Spark本身是函数式编程的计算模型,所以,比如在words或pairs DStream中,没法在实例变量中
// 进行缓存
// 此时就只能将最后计算出的wordCounts中的一个一个的RDD,写入外部的缓存,或者持久化DB // 最后,每次计算完,都打印一下这一秒钟的单词计数情况
// 并休眠5秒钟,以便于我们测试和观察 Thread.sleep(5000);
wordCounts.print(); // 首先对JavaSteamingContext进行一下后续处理
// 必须调用JavaStreamingContext的start()方法,整个Spark Streaming Application才会启动执行
// 否则是不会执行的
jssc.start();
//等待执行停止,执行过程中发生的任何异常将在此线程中抛出
jssc.awaitTermination();
jssc.close();
} }
二、scala版本
package cn.spark.study.streaming import org.apache.spark.SparkConf
import org.apache.spark.streaming.Seconds
import org.apache.spark.streaming.StreamingContext /**
* @author Administrator
*/
object WordCount { def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[2]").setAppName("WordCount") val ssc = new StreamingContext(conf, Seconds(1)) val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap { _.split(" ") }
val pairs = words.map { word => (word, 1) }
val wordCounts = pairs.reduceByKey(_ + _) Thread.sleep(5000)
wordCounts.print() ssc.start()
ssc.awaitTermination()
} }
三、StreamingContext详解
有两种创建StreamingContext的方式: val conf = new SparkConf().setAppName(appName).setMaster(master);
val ssc = new StreamingContext(conf, Seconds(1)); StreamingContext,还可以使用已有的SparkContext来创建
val sc = new SparkContext(conf)
val ssc = new StreamingContext(sc, Seconds(1)); appName,是用来在Spark UI上显示的应用名称。master,是一个Spark、Mesos或者Yarn集群的URL,或者是local[*]。 batch interval可以根据你的应用程序的延迟要求以及可用的集群资源情况来设置。 一个StreamingContext定义之后,必须做以下几件事情:
1、通过创建输入DStream来创建输入数据源。
2、通过对DStream定义transformation和output算子操作,来定义实时计算逻辑。
3、调用StreamingContext的start()方法,来开始实时处理数据。
4、调用StreamingContext的awaitTermination()方法,来等待应用程序的终止。可以使用CTRL+C手动停止,或者就是让它持续不断的运行进行计算。
5、也可以通过调用StreamingContext的stop()方法,来停止应用程序。 需要注意的要点:
1、只要一个StreamingContext启动之后,就不能再往其中添加任何计算逻辑了。比如执行start()方法之后,还给某个DStream执行一个算子。
2、一个StreamingContext停止之后,是肯定不能够重启的。调用stop()之后,不能再调用start()
3、一个JVM同时只能有一个StreamingContext启动。在你的应用程序中,不能创建两个StreamingContext。
4、调用stop()方法时,会同时停止内部的SparkContext,如果不希望如此,还希望后面继续使用SparkContext创建其他类型的Context,
比如SQLContext,那么就用stop(false)。
5、一个SparkContext可以创建多个StreamingContext,只要上一个先用stop(false)停止,再创建下一个即可。
50、Spark Streaming实时wordcount程序开发的更多相关文章
- Spark练习之通过Spark Streaming实时计算wordcount程序
Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.Spark ...
- 55、Spark Streaming:updateStateByKey以及基于缓存的实时wordcount程序
一.updateStateByKey 1.概述 SparkStreaming 7*24 小时不间断的运行,有时需要管理一些状态,比如wordCount,每个batch的数据不是独立的而是需要累加的,这 ...
- 【Streaming】30分钟概览Spark Streaming 实时计算
本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark S ...
- 【转】Spark Streaming 实时计算在甜橙金融监控系统中的应用及优化
系统架构介绍 整个实时监控系统的架构是先由 Flume 收集服务器产生的日志 Log 和前端埋点数据, 然后实时把这些信息发送到 Kafka 分布式发布订阅消息系统,接着由 Spark Streami ...
- 输入DStream之基础数据源以及基于HDFS的实时wordcount程序
输入DStream之基础数据源以及基于HDFS的实时wordcount程序 一.Java方式 二.Scala方式 基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实 ...
- Spark Streaming实时计算框架介绍
随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐.用户行为分析等. Spark Streaming是建立在 ...
- 【转】Spark Streaming和Kafka整合开发指南
基于Receivers的方法 这个方法使用了Receivers来接收数据.Receivers的实现使用到Kafka高层次的消费者API.对于所有的Receivers,接收到的数据将会保存在Spark ...
- Spark Streaming和Kafka整合开发指南(二)
在本博客的<Spark Streaming和Kafka整合开发指南(一)>文章中介绍了如何使用基于Receiver的方法使用Spark Streaming从Kafka中接收数据.本文将介绍 ...
- 新闻实时分析系统 Spark Streaming实时数据分析
1.Spark Streaming功能介绍1)定义Spark Streaming is an extension of the core Spark API that enables scalable ...
随机推荐
- (转)消息队列 Kafka 的基本知识及 .NET Core 客户端
原文地址:https://www.cnblogs.com/savorboard/p/dotnetcore-kafka.html 前言 最新项目中要用到消息队列来做消息的传输,之所以选着 Kafka 是 ...
- [個人紀錄] WindowsLiveWriter 插入代碼跳出錯誤
跳出找不到設定檔Can’t load configruaration fromC:\Users\…\AppData\Roaming\Windows Live Writer\WindowsLiveWri ...
- docker容器的使用整理
2019/10/24, docker 19.03.4 摘要:docker容器常用命令整理 gitbooks文档 docker脚本安装 使用官方脚本安装docker,从阿里云下载: curl -fsSL ...
- window 包管理器--Chocolatey
Chocolatey 介绍 在 Linux 下,大家喜欢用 apt-get 来安装应用程序,如今在 windows 下,大家可以使用 Chocolatey 来快速下载搭建一个开发环境. Chocola ...
- win 修改notebook路径
开始发现 notebook 默认的路径是 C:\Users\Administrator 需要修改 将目标中的%USERPROFILE% 直接删掉了
- vue生命周期小总结
beforeCreate:function(){} //组件实例化之前执行的函数 created:function(){} //组件实例化完毕,但是页面没有显示 beforeMount:functio ...
- Celery:Monitor
参考文档:http://docs.celeryproject.org/en/latest/userguide/monitoring.html#guide-monitoring
- 《linux就该这么学》课堂笔记02 虚拟机安装使用
这节学习了虚拟机安装RHEL系统,了解了shell.以及命令的格式
- Deployment
Deployment RC是kubernetes中的一个核心概念,Deployment 是新一代的RC,除了拥有RC的功能外,还具备一下特性: 支持事件和状态查看:可以查看Deployment升级的状 ...
- https://www.runoob.com/linux/mysql-install-setup.html
https://www.runoob.com/linux/mysql-install-setup.html