kafka设计的目标之一就是高吞吐量。除了最基础的将一个topic划分为多个partition外,还从以下各个方面优化。

kafka broker端为了提高吞吐量:实现顺序读写磁盘、利用page cache,将文件数据映射到内存,利用sendfile网传时socket通信时直接读取内存区域(减少操作系统上下文切换、零拷贝提速);

producer端,将消息buffer起来,当消息的条数达到一定阀值时(一定数量或时间),批量发送给broker;

consumer,批量fetch多条消息.通过配置到达一定阈值时(一定数量或时间),批量从broker拉取信息;

对于producer/consumer/broker三者而言,CPU的开支应该都不大,因此启用消息压缩机制减少网传数据量;压缩需要消耗少量的CPU资源,可以将任何在网络上传输的消息都经过压缩.kafka支持gzip/snappy等多种压缩方式。

顺序写磁盘

根据《一些场景下顺序写磁盘快于随机写内存》所述,将写磁盘的过程变为顺序写,可极大提高对磁盘的利用率。

Kafka的整个设计中,Partition相当于一个非常长的数组,而Broker接收到的所有消息顺序写入这个大数组中。同时Consumer通过Offset顺序消费这些数据,并且不删除已经消费的数据,从而避免了随机写磁盘的过程。

由于磁盘有限,不可能保存所有数据,实际上作为消息系统Kafka也没必要保存所有数据,需要删除旧的数据。而这个删除过程,并非通过使用“读-写”模式去修改文件,而是将Partition分为多个Segment,每个Segment对应一个物理文件,通过删除整个文件的方式去删除Partition内的数据。这种方式清除旧数据的方式,也避免了对文件的随机写操作。

通过如下代码可知,Kafka删除Segment的方式,是直接删除Segment对应的整个log文件和整个index文件而非删除文件中的部分内容。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/**
* Delete this log segment from the filesystem.
*
* @throws KafkaStorageException if the delete fails.
*/
def delete() {
val deletedLog = log.delete()
val deletedIndex = index.delete()
val deletedTimeIndex = timeIndex.delete()
if(!deletedLog && log.file.exists)
throw new KafkaStorageException("Delete of log " + log.file.getName + " failed.")
if(!deletedIndex && index.file.exists)
throw new KafkaStorageException("Delete of index " + index.file.getName + " failed.")
if(!deletedTimeIndex && timeIndex.file.exists)
throw new KafkaStorageException("Delete of time index " + timeIndex.file.getName + " failed.")
}

充分利用Page Cache

使用Page Cache的好处如下

  • I/O Scheduler会将连续的小块写组装成大块的物理写从而提高性能
  • I/O Scheduler会尝试将一些写操作重新按顺序排好,从而减少磁盘头的移动时间
  • 充分利用所有空闲内存(非JVM内存)。如果使用应用层Cache(即JVM堆内存),会增加GC负担
  • 读操作可直接在Page Cache内进行。如果消费和生产速度相当,甚至不需要通过物理磁盘(直接通过Page Cache)交换数据
  • 如果进程重启,JVM内的Cache会失效,但Page Cache仍然可用

Broker收到数据后,写磁盘时只是将数据写入Page Cache,并不保证数据一定完全写入磁盘。从这一点看,可能会造成机器宕机时,Page Cache内的数据未写入磁盘从而造成数据丢失。但是这种丢失只发生在机器断电等造成操作系统不工作的场景,而这种场景完全可以由Kafka层面的Replication机制去解决。如果为了保证这种情况下数据不丢失而强制将Page Cache中的数据Flush到磁盘,反而会降低性能。也正因如此,Kafka虽然提供了flush.messagesflush.ms两个参数将Page Cache中的数据强制Flush到磁盘,但是Kafka并不建议使用。

如果数据消费速度与生产速度相当,甚至不需要通过物理磁盘交换数据,而是直接通过Page Cache交换数据。同时,Follower从Leader Fetch数据时,也可通过Page Cache完成。下图为某Partition的Leader节点的网络/磁盘读写信息。

从上图可以看到,该Broker每秒通过网络从Producer接收约35MB数据,虽然有Follower从该Broker Fetch数据,但是该Broker基本无读磁盘。这是因为该Broker直接从Page Cache中将数据取出返回给了Follower。

支持多Disk Drive

Broker的log.dirs配置项,允许配置多个文件夹。如果机器上有多个Disk Drive,可将不同的Disk挂载到不同的目录,然后将这些目录都配置到log.dirs里。Kafka会尽可能将不同的Partition分配到不同的目录,也即不同的Disk上,从而充分利用了多Disk的优势。

零拷贝

Kafka中存在大量的网络数据持久化到磁盘(Producer到Broker)和磁盘文件通过网络发送(Broker到Consumer)的过程。这一过程的性能直接影响Kafka的整体吞吐量。

传统模式下的四次拷贝与四次上下文切换

以将磁盘文件通过网络发送为例。传统模式下,一般使用如下伪代码所示的方法先将文件数据读入内存,然后通过Socket将内存中的数据发送出去。

1
2
buffer = File.read
Socket.send(buffer)

这一过程实际上发生了四次数据拷贝。首先通过系统调用将文件数据读入到内核态Buffer(DMA拷贝),然后应用程序将内存态Buffer数据读入到用户态Buffer(CPU拷贝),接着用户程序通过Socket发送数据时将用户态Buffer数据拷贝到内核态Buffer(CPU拷贝),最后通过DMA拷贝将数据拷贝到NIC Buffer。同时,还伴随着四次上下文切换,如下图所示。

sendfile和transferTo实现零拷贝

Linux 2.4+内核通过sendfile系统调用,提供了零拷贝。数据通过DMA拷贝到内核态Buffer后,直接通过DMA拷贝到NIC Buffer,无需CPU拷贝。这也是零拷贝这一说法的来源。除了减少数据拷贝外,因为整个读文件-网络发送由一个sendfile调用完成,整个过程只有两次上下文切换,因此大大提高了性能。零拷贝过程如下图所示。

从具体实现来看,Kafka的数据传输通过TransportLayer来完成,其子类PlaintextTransportLayer通过Java NIO的FileChannel的transferTotransferFrom方法实现零拷贝,如下所示。

1
2
3
4
@Override
public long transferFrom(FileChannel fileChannel, long position, long count) throws IOException {
return fileChannel.transferTo(position, count, socketChannel);
}

注: transferTotransferFrom并不保证一定能使用零拷贝。实际上是否能使用零拷贝与操作系统相关,如果操作系统提供sendfile这样的零拷贝系统调用,则这两个方法会通过这样的系统调用充分利用零拷贝的优势,否则并不能通过这两个方法本身实现零拷贝。

减少网络开销

批处理

批处理是一种常用的用于提高I/O性能的方式。对Kafka而言,批处理既减少了网络传输的Overhead,又提高了写磁盘的效率。

Kafka 0.8.1及以前的Producer区分同步Producer和异步Producer。同步Producer的send方法主要分两种形式。一种是接受一个KeyedMessage作为参数,一次发送一条消息。另一种是接受一批KeyedMessage作为参数,一次性发送多条消息。而对于异步发送而言,无论是使用哪个send方法,实现上都不会立即将消息发送给Broker,而是先存到内部的队列中,直到消息条数达到阈值或者达到指定的Timeout才真正的将消息发送出去,从而实现了消息的批量发送。

Kafka 0.8.2开始支持新的Producer API,将同步Producer和异步Producer结合。虽然从send接口来看,一次只能发送一个ProducerRecord,而不能像之前版本的send方法一样接受消息列表,但是send方法并非立即将消息发送出去,而是通过batch.sizelinger.ms控制实际发送频率,从而实现批量发送。

由于每次网络传输,除了传输消息本身以外,还要传输非常多的网络协议本身的一些内容(称为Overhead),所以将多条消息合并到一起传输,可有效减少网络传输的Overhead,进而提高了传输效率。

零拷贝章节的图中可以看到,虽然Broker持续从网络接收数据,但是写磁盘并非每秒都在发生,而是间隔一段时间写一次磁盘,并且每次写磁盘的数据量都非常大(最高达到718MB/S)。

数据压缩降低网络负载

Kafka从0.7开始,即支持将数据压缩后再传输给Broker。除了可以将每条消息单独压缩然后传输外,Kafka还支持在批量发送时,将整个Batch的消息一起压缩后传输。数据压缩的一个基本原理是,重复数据越多压缩效果越好。因此将整个Batch的数据一起压缩能更大幅度减小数据量,从而更大程度提高网络传输效率。

Broker接收消息后,并不直接解压缩,而是直接将消息以压缩后的形式持久化到磁盘。Consumer Fetch到数据后再解压缩。因此Kafka的压缩不仅减少了Producer到Broker的网络传输负载,同时也降低了Broker磁盘操作的负载,也降低了Consumer与Broker间的网络传输量,从而极大得提高了传输效率,提高了吞吐量。

高效的序列化方式

Kafka消息的Key和Payload(或者说Value)的类型可自定义,只需同时提供相应的序列化器和反序列化器即可。因此用户可以通过使用快速且紧凑的序列化-反序列化方式(如Avro,Protocal Buffer)来减少实际网络传输和磁盘存储的数据规模,从而提高吞吐率。这里要注意,如果使用的序列化方法太慢,即使压缩比非常高,最终的效率也不一定高。Kafka设计解析(六)- Kafka高性能架构之道

kafka设计要点之高吞吐量的更多相关文章

  1. kafka 基础知识梳理-kafka是一种高吞吐量的分布式发布订阅消息系统

    一.kafka 简介 今社会各种应用系统诸如商业.社交.搜索.浏览等像信息工厂一样不断的生产出各种信息,在大数据时代,我们面临如下几个挑战: 如何收集这些巨大的信息 如何分析它 如何及时做到如上两点 ...

  2. Kafka如何保证高吞吐量

    1.顺序读写 kafka的消息是不断追加到文件中的,这个特性使kafka可以充分利用磁盘的顺序读写性能 顺序读写不需要硬盘磁头的寻道时间,只需很少的扇区旋转时间,所以速度远快于随机读写 生产者负责写入 ...

  3. Kafka 设计与原理详解

    一.Kafka简介 本文综合了我之前写的kafka相关文章,可作为一个全面了解学习kafka的培训学习资料. 转载请注明出处 : 本文链接 1.1 背景历史 当今社会各种应用系统诸如商业.社交.搜索. ...

  4. kafka之二:Kafka 设计与原理详解

    一.Kafka简介 本文综合了我之前写的kafka相关文章,可作为一个全面了解学习kafka的培训学习资料. 转载请注明出处 : 本文链接 1.1 背景历史 当今社会各种应用系统诸如商业.社交.搜索. ...

  5. kafk设计要点

    kafka的设计目标是高吞吐量,所以kafka自己设计了一套高性能但是不通用的协议,他是仿照AMQP( Advanced Message Queuing Protocol   高级消息队列协议)设计的 ...

  6. 高吞吐量的分布式发布订阅消息系统Kafka--安装及测试

    一.Kafka概述 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者规模的网站中的所有动作流数据. 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因 ...

  7. 高吞吐量消息系统—kafka

    现在基本上大数据的场景中都会有kafka的身影,那么为什么这些场景下要用kafka而不用其他传统的消息队列呢?例如rabbitmq.主要的原因是因为kafka天然的百万级TPS,以及它对接其他大数据组 ...

  8. kafka高吞吐量的分布式发布订阅的消息队列系统

    一:kafka介绍kafka(官网地址:http://kafka.apache.org)是一种高吞吐量的分布式发布订阅的消息队列系统,具有高性能和高吞吐率. 1.1 术语介绍BrokerKafka集群 ...

  9. kafka高吞吐量之消息压缩

    背景 保证kafka高吞吐量的另外一大利器就是消息压缩.就像上图中的压缩饼干. 压缩即空间换时间,通过空间的压缩带来速度的提升,即通过少量的cpu消耗来减少磁盘和网络传输的io. 消息压缩模型 消息格 ...

随机推荐

  1. Kafka学习笔记之如何永久删除Kafka的Topic

    0x00 问题描述 使用kafka-topics --delete命令删除topic时并没有真正的删除,而是把topic标记为:“marked for deletion”,导致重新创建相同名称的Top ...

  2. Django model distinct 的使用方法

    原文: 今天突然有人问起在 django 的 model 里面怎么用 distinct, 对于这种东西,我一向的观点是查看django 的在线文档.于是不加思索的根据在线文档给出了答案,但结果很让人沮 ...

  3. jQuery---jq基础了解(语法,特性),JQ和JS的区别对比,JQ和JS相互转换,Jquery的选择器(基础选择器,层级选择器,属性选择器),Jquery的筛选器(基本筛选器,表单筛选器),Jquery筛选方法

    jQuery---jq基础了解(语法,特性),JQ和JS的区别对比,JQ和JS相互转换,Jquery的选择器(基础选择器,层级选择器,属性选择器),Jquery的筛选器(基本筛选器,表单筛选器),Jq ...

  4. 教你玩转Git-合并冲突

    Git 是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目.Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放源码的版本控制软件.Git 与 ...

  5. vue使用vue-cli创建项目

    安装运行环境(node和npm) 安装vue-cli(查看是否安装成功vue -V) 安装webpack 新建项目 1.vue init webpack 项目名称 2.配置项目有关的信息(项目名称,开 ...

  6. 下拉框等需要显示上下箭头切换的CSS样式

    下拉框等需要显示上下箭头切换的CSS样式   .icon-right, .icon-down, .icon-up { display: inline-block; padding-right: 13r ...

  7. [TensorFlow 2.0] Keras 简介

    Keras 是一个用于构建和训练深度学习模型的高阶 API.它可用于快速设计原型.高级研究和生产. keras的3个优点: 方便用户使用.模块化和可组合.易于扩展 简单点说就是,简单.好用.快(构建) ...

  8. httpget请求测试用Java代码的实现方法

    原文:http://www.cnblogs.com/johnson-yuan/p/6637906.html 1.首先要在eclipse中导入HttpClient的jar包. 2.新建类并写入一下代码: ...

  9. SQL 乐色干货笔记

    因为公司基本都是用存储过程所以本来写的干货基本都是存储过程的. SELECT TOP 1 Code,Invitation,Num,Typ FROM SignLog WITH(NOLOCK) WHERE ...

  10. filter-grok,dissect匹配数据

    Grok(正则捕获).Dissect(切分): grok使用正则匹配来提取非结构化日志数并据解析为结构化和可查询的内容. dissect使用多种定界符(非数字和字母的符号,split只能一次只能使用一 ...