Txt数据

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA74AAAGzCAIAAACHHVyhAAAgAElEQVR4nO3d36+l13kf9v0X+N6XvePfQOjWvaSBGuhtnBuiKMALIkADNEgjoD4pAjc26cA2mvbYKezYSZtYbHgydtyIjmI5ojniUBQlUZwRyRmRlkSJUi0EItOL5vTizNmzz/vjWc9a79o/Dt/PBwuDs/e71nqfd+0LfmdxnT2bn33y6VV76623fgQAAMzYiM4AAJAhOgMAQIroDAAAKaIzAACkNEbnv/eP/nHwJwAA3EZPhaqj8z9/+9F/+V/916/+1ce/8Iu/9MrDj37hF3/p/3rwV7/wi7/0+9989Au/+Ev/86vf/Idf/tpX/vR8308FAADd9YzOH/3oR7/9xoPv/OQ/vv3xT7/20f/zl9/78Zc++NGfvP+DLzz4q3/6rUfnX3/vV75071f//I0Xf+VvHuDBANibey8+88yL965+fun5uf+GbLsMvfT8/LWpzs+/1KVqgMWeeuqp4FJddP72X/3g97/x3v0f//SbP/zpve//5D98+PErjz761+9+71/e/+D3vvXwH3/t3c9/8e75V98WnQFuvXsvPvNUGGmv4/G9F5+JN2memJ5OdAZOSCk6f/Hzn/vc5z73uc9lovOffeeDOw8+ePW9D/783e++cv/hnW+994W3HvzhG9/+3de/9VuvvvWrf/7G83/0f/+z178pOgPr9tLzcehcOkN+/mWVxHvH0dXZa/mcnd+1BugoEZ0//8WfffLFTHT+w2++/+VH3//6D//69R/85Cvf+/G/++5Hf/z+97/w4MM/ePvR+Vvvv/j6g7/18r//2g9+LDoD6/ZZic7FuZ/E21Ikng3C1wMlZeA05KLzFz+fic6/de/+6x989KXvfPffvvPwzrfe+6O3HvyzN975J6+//VuvfuPX/+Lr/+O/e/2/+YN//f5HH4vOwGoNIuR0trwRE5+cJL7KuLMzzMx/9c5OPn7p+aeeeur5l+J5kg+RObCxHXKzhp0bzu9Pv/T8U8+8+OLzTz3/4s7ZaoAqc39nb54tuHQVnX/3d/7G3yhG5+//8Ie//caDV7/7/de+/+O/+PBHrzz66M573//C/Q//4O1Hv/PWe7/5xrt//yvf+Nt3vvz//ef/LDoD6zba633p+Z3seu/FZ7avblx46cVteKzbdd6ZZXBCecmu804anttTvi59/hcJo+h+fYOrs873hGegTffoHLiKzp///OfKu85f++73/uk33v/zh9/7N99+/199891/8fX7f/DGt3/nq9/6rVe/8etffvPs39/77+/8xd/5V3/2k5/+VHQG1m0QWAc7sldvPPkNu6loW3tg43F4Hs3XMTqPpqk46zzRdbsGO78mWPW9HABHUHFg44/vP3r5nUd/9u6HX/rwh3/68Acvf+d7/+f9D37/Ww//t6+//4/uPfgHd7/99155/Te/8tbl5aXoDKzbzcA6s2X7/Es/mj/pW3/W+fFMg4mCeWZPkOx2iKLz7j2SbuxSbyfc+YaN4td6ABxVxa8J/s6bD15598M/ffDBF77xnf/jzfu/d+/t//Wr3/zNV9/6h19+8+xL9/7Ov/3q3/rCK//7q2/adQZWbyI6R3FwG2KfaTywsTNJPjoXZaPzTIVzu86js9mDL6fbPc8CcGIqovOLX33nlXc/vHjnu3fe+94f3f/wD9/+7u9+4+Fvf+07v/76/f/pL7/9d7/8jb995y/ufvhDu87A6g0C640DzeGg7aja6Pz4+MPOKYjMPLFEdL6OxPmzztu1CI9P39yVBjgZ2e91fvSDj377jQevvPvhHz/44OqU8z95/e3/5bVv/sZ/+PqvfvnNv/+le3/3lbv/7R/eeed7H9l1BlZvmJWHG633Xnzm+ts0nr+x0XzjH/C7+RUVw1/+G2zqBr8m2LqD+zgv33vx+Rdfmo7O85vR5bPONzuLycDtsN11Lvxrgn/5/oe/8uq3/sFr3/711++/eO/BC68/eOH1+7/2+v1f++o7v3HvwW/ce/Brd9/57/7kK5eXl3adAbbbsINjCuOjxTv7tTfD5Y0ZJn/97/HVl56/OXaQ00eV1D7DMy/e+9FoN3t7p+nMO90/uJHoDNwO2ei868F7D3/y058GTXQGuPVuBuPpIxlTX5vxWEUYFp2BW2Pzs08+vWr56Pwvfu9XX/yVvxm0r/zp+V6LBgCAw2uJzgAAsEKiMwAApGz+i2uiMwAABDY/++RT0RkAAIoeH9gQnQEAIOasMwAApIjOAACQUojO9wEAgPv379+/X47O2w6apmmapmmatuYmOmuapmmapmlaqonOmqZpmqZpmpZqXaLzo5fPnju/e/yH0VbZ7p4/d/5azZDXzs9efnT0sjVN0zRNu32t167z3fPnZuLI3fOzi0e7L587v7v/BxvEqenyriPUo5fPnrupLoq1lHd28fDxz49ePkskuatlvHu+/9rCAibWObDnUkc3P7+789bjFb7x4V79BU901jRN0zStrTVG51HWHLmOhtuY8viHqej88OLsufO7wwh7dvHy+XNTcS3RHue86WB3vUG+za+D8Pro5bMnmW+6tufOX/vk09eay9uNzsMaZ+LmNrneXMDr8j792Sef/uzRxU6NT56osc44FT83MWcQSa/qfO38ucGn//DibNEHfbWYTxbt8c8PL86uJ3zyaT68OAui8+4HfeN/oTy6OFv6cWuapmma9hlpi3adt1nkSRvsTT66OHucEa/D4jg6P+kzPviR25Edtkcvn1/fdJREXzt/7vzup6/txsKz8/O5XeeotsbydiP42cXF+c7trtNbKbQ+dx1An5R3lXR3inl0cfbkLwlty7i7aGcvX5yfXVycD//aM96wD5dxuGu+XdW2CgcLdf7a1Sf+6OLsyVIMovNgyHW34IO+js7Ll1HTNE3TtNvelh3YGP1P/Ktgun35ZE90Kg1ejd0ZMhVPGw543D0/v3s18DzYdc78X/tCbW3lffIkqF3/3eN6dYKpHl2cja7ulHf3/Lmppdvm1NZzMld/x7haz+sTI5N1RufdZ+t8kkqXnOTZ/b8E278s7YbywUf/JAHv/C+R+Q+6T5Gapmmapn0W2sKzzqMjxU+O8H76OBE+/p/g1zl1GD52d/Km4tfuxmquPd5RPrt4GPwC2aOLs/O7j/+3/uQm79nFw2JtTeX97OpvFNu/PDw+ZXEV8+cPB09E55urOlHGzgnv5mUMXB3AiA2X8dPdMxvD0yaVFT68GO54n11c7P6F6TooDw5sbN/ZFhZ+0LvRuenj1jRN0zTtM9OW/prgzqHS4fmNhxdnZ+fnZ+d3b8S+YXTeTbePbh5meDTqkGzbbHT3/Lmzs9GJgrOLRzdS19nFyzc2y7d3nK1t5xEayrt7fn5+9XeM14Zx+fFfNkah8OzlR4O/lty89XR03k2BDXV+Ovq70GB5d965mDi/Pn3rG+cfJpe9rt38vwfjSSZ3nbcFlD7o63GjXW1N0zRN09bYln/DxvWO3ej/Zb92cfFwvFc66HZjG6/PeeIne7rn51fh/bVP7p6f3706cjDI+ttDIxNRqVxbY3nnd7eRdLTjPdi2v1HAzdA2OOg8nXF3N1OXHyYeR8kbCz7sdHf8Ee+s5O5ubmuFN/atp78DZLzrvPvroYkP+kadjjtrmqZp2qpbly+nu3s+zHzX7So6zwWw4ZmKyXi6YJ/v7vlz5xfjTcRtwNoe7UjuOk9F5/ovFb64ePjJbnQOT7zsvBycIx99s0R41nl/u86PLs7PzsYngGd3na/z7o3U21bho4uzif+pcDO4j6Pzk7/Oze46z0dnu86apmmaturWZdf5+ksqxjGruOt84xuXZ846N4SV67B+dnH35Yld57tXefrsLNx1LtbWXF5TdH6ydI93SW98WfXDi7P5b9hYUGe863xVyUyvneh8c6f20cXZc2dnZ+M32yp8cmpl9y9Fu9H55Sf74ldniJ5cKn/Qg7POorOmaZqmrbgtic5Xp0J3AtBVhNpNe+Xo3P8bNq5/Ee0qDz2ais4TBzauv3Zjd0d8WNvuzvXMbz0mW/rAxk4OfVzD9rcbx/vQM9/rvKDO4lKfvzYz+e7B99F++dVft27+Rat5JW9G5+tP8MlXZzy38/8Zrr5G+uF27JNvH/cNG5qmaZqmlduSfxJl5tDnVYC7CiWJ6Bx+a8GCo6WP9yAH31y2uxv6ODrvbjlff1Vc8hsVmsuLd523MX28wfn4byeV35vRUmfmGzaefKbRrnOmzh5niKfPOg/ucp31n7sRqXMr6aCzpmmapq299fqHuBe10bHXx+1I/37bjTg7V9vxykst3e2q8/QrPJEiNU3TNE07bjuJ6KxpmqZpmqZpp99EZ03TNE3TNE1LtXJ0/sFHP9Q0TdM0TdM0rRyd/xoAAPjrvy5H5//h4oeapmmapmmapqWi8yUAAKye6AwAACmfzei82Ww6dusyCgCA264lOm92TL559f5mylz/oOfcHS/nU2zH6DzZJxjY/FzJUeP3q/rH9QAAEGiMzhMT3Yxrxf6ZOTPdtu/UpsN8agxuWuxc9TIz52HWGQCAsZ7ReW7XM1XH4uhcW2F+L3Yzv7k71znzcrMT+vOPfJh1BgBgbL+7zkHEzMxZ262Ya2tv11BMVShvKOYw6wwAwNh+d53z26J9N02L3eK94SWj4j4NaTvuPJ5WdAYA2JNu0Xl69uujDsVRDeF1HB+TAXQyj07eazx8Mq0GUzWk7Qbd1xkAgLEO0TlIq5ORLs64QeQd33ryncID56aNnzcYsvyJ4soPs84AAIx13nUOUmZVPM13232nGAoH9TSn26q8W+zQEGr3vc4AAIx91qJz5mptFA4eqqHgKqIzAMDp6PwNG+Pt0mTQPMyuc2aSuH+c1OdqKO4iZ269+86+1xkAgLH+0Xmu59F3nWu7ja/WDow7ZBJ2EJ3n7tJlnQEAGNtjdK4Kmguj83gvNtjlbYvOyalqO9QOP8w6AwAw1ic67ybXxjoWROfaXeGGrLnv50oOP9g6AwAw1hid584VxIcQmndDgxnm9l/jreJknYMJ4/6ZaYvrEBe/2fM6AwAQaInOwyl6pLF9TDI3562Ij0Fu7jstAABJHaLz9LyLI1rDDM03FSgBACjqc2Bj+37x5/EMydkyRx0yCXiyMNEZAICizf0H37lqff9JlEwqnewTD4xnSx75rSoSAACuPImMXaJzW5/l0bnqZPDuLfK/YAcAwMr1ic5zBzDiVNolOhcPe8yZvCkAAMzpv+u8uflvlEx2CLJ1265zcWBMdAYAoKhzdK46RtzxwMb2ajKyX5YSPAAADPSMznNHIIohOJ+Sg1vnd53zSR0AALZ6nnWObpP+VwC3LzPRebxPnNlCFp0BAGiweefaIb9hI07SwfCF047fFJ0BAEjqsOscHBqe3AOuOomR7Da5wVzM3zI0AAB5e/le5yAi7/Yphuy5mcfzjK8GdxedAQBosK8vp8v0zM+Z75ZM7ZN94tQOAMDK7evL6TKd99GtmH0z2RoAAMYao/N4gzY+ZTHumRTccbKkwtOmy4jnAQBghTY///M///HHH1/WROfhFLmsuY9IKukCAHAwLbvOHe56pLCbvG9bebcowd+iUgEATke3AxuzN1j2LRZtBzmCcx3Jm7b1CQbG50PG9SdV1dl9/QEAVmUvX043178huiVvOr46Ga8z+a8qVubHjsNx/mW+gLjb/tYfAGANNr/8y798eXn58ccfL4/Oxffj/BpfKjxG/b8jGNw3mbY311/Wke+ceZkMuPngfoD1BwBYg8eR6OLiYn/ReXy1qmccSZMTZiYpzpM0V2FseTFHXH8AgDXoHJ2TuWpJyFuSMovdBh3aps1UmBxSG7WPtf4AAGvwOAYtP7CxGf1TI4Ocl0+Bk9Ft/EMwZHfafADNx/Tx8Li88fvFWwdTBfMfa/0BANZg83M/93Nvvvnm5eJfExxHt8n+mQS2MDoX55+7ae0kk/E3iM75EN9W/9yoA6w/AMAaPIlBXaLz5NWjR+diVN3NnUvSbT5WFns2R+2jrD8AwBr0jM6ZiHms6NxWUhwTg/xdtDCATpZ6xPUHAFiDPtE5mVMbAmuv6FzctS1OEvePV2Cuhrie5K2Ldz/A+gMArEH/6By8zEe3bZocb+V233Wu7Ta+Wjsw7pBJ2MkFD+rsu/4AAGtwuOgcR7Txy8wMxZK2f2Z2eduic3Kq2g5Vw4++/gAAa9AhOscJrCp1FWPo3DxzuTC4mpwkLrU5TXaMzqew/gAAa9AYnYMdykHPyVGZPeDxDPGccbfBz3MZsajhuTLTFtehWHzQP1lncYa5dwAAVmLzzrV8dD5ccek95qp5ek17FIcs8lYvFABAdy27zh3ueqTslbxvW3m3KFDeolIBAE7Hfg9sXKa/1SEYHhwwmKtk4XZp7XNlBlYd1Sh2PpH1BwBYlT7fsFG4xyixNWSveMj46mS8zuS/qliZHzsOx/mX+QLibvtbfwCANej5DRtzeTROsXPzTG6Xzj5G63dozFWVSdub0m8BBrcOXm5yAXduVfM9O64/AMAa9Nl1zsSsfBSL81ycDucmzExSnCdprsLYkmKOvv4AAGtwuOgcz5CfbUnKLHYbdGibNlNhckgyah99/QEA1mCP0XmQ8/IbrnOzzd19PGR32rYAGt9rPDwub/x+8dbBVHHPo6w/AMAadIvOcznsshTFavsnU2ZtwiuGyOJNtwk1mL8tvyaLP+L6AwCsweY//af/96rt78DG0aNzMarupt4l6TYfK4s9q6L20dcfAGANNj/75NOr1is6xy+PFZ2rbhEMDK7u5u+ihQE0v+CXojMAQCebP/mTf3PVDhCdGwJrr+hc3ELOPFemzqDC/C5yUVt03t/6AwCsQbezzpmX+ei2TZPjrdzuu8613cZXawfGHTIJe9/RuXb9AQDWoH90nrsaR7Txy8wMyZsmd3nbonNyqtoOVcOPvv4AAGvQITrHkbQqdRVj6Nw8c7kwuJqcJC61OU12jM6nsP4AAGvQGJ2DHcpBz8lRmT3g8QzxnHG3wc9zGbGo4bky0xbXoVh80D9ZZ3GGuXcAAFaiJTofrrj0HnPVPL2mPYpDFnmrFwoAoLvjROdjZa/kfdvKu0WB8haVCgBwOvZ7YOMy/a0OwfDggMFcJQu3S2ufKzOw6qhGsfOJrD8AwKr0+YaNwj1Gia0he8VDxlcn43Um/1XFyvzYcTjOv8wXEHfb3/oDAKxBt+gc76FO9hn0jC8VHqP1OzTmqsqk7U3ptwCDWwcvN7mAO57hiOsPALAGfaJznAvHb+ZDYTGSJifMTFKcJ2muwtiSYo6+/gAAa3C46JzvEIe8JSmztrC2aTMVJocko/bR1x8AYA06ROdgB3c35+U3XCej2/iHYMjutM0BNLjXeHhc3vj9ZHSenCrZ7ZDrDwCwBnuMzpMdMglsYXROVjXuXzvJ5Dpkgmxtfi1Wnu+wp/UHAFiDVUTnYlTdTb1L0m3fvJuM2qew/gAAa7CW6NxWUvxoQf4uWhhARWcAgMM7aHRuCKy9onNxC7k4Sdy/mGXzu8gZbdF5f+sPALAGHaLz+J25l/notk2T463c7rvOtd3GV2sHxh0yCTu54EGdfdcfAGAN+kfnuatxRBu/zMyQvGlyl7ctOienqu1QNfzo6w8AsAZ9ovPlfPCqSl3FGDo3z1wuDK4mJ4lLbU6TfaPz5bHXHwBgDRqjc7BDOeg5OSqzBzyeIZ4z7jb4OU7/xTqrniszbXEdisUH/ZN1FmeYewcAYCVaovPhikvvMVfN02vaozhkkbd6oQAAujtOdD5W9kret628WxQob1GpAACnY78HNi7T3+oQDA8OGMxVsnC7tPa5MgOrjmoUO5/I+gMArEq3XxOM7jFKbA3ZKx4yvjoZrzP5rypW5seOw3H+Zb6AuNv+1h8AYA06ROdiHo1T7Nw8k9uls4/R+h0ac1Vl0vam9FuAwa2Dl5tcwJ1b1XzPjusPALAGfXadMzErH8XiPBenw7kJM5MU50maqzC2pJijrz8AwBr0j86THYozzF0t3it5x7bC2qbNVJgckozaR19/AIA12GN0HuS8/IbrZHQb/xAM2Z22OYAG9xoPj8sbv58Ju/mQevT1BwBYg0PsOldFzGL/ZMqsTXjFEFm86TahBvO35ddM8cmXe1p/AIA1WEV0LkbV3dS7JN3mY2WxZ1XUPvr6AwCswVqic9UtgoHB1d38XbQwgIrOAACHd9Do3BBYe0Xn4hZy5rkydQYV5neRi9qi8/7WHwBgDU40Om/T5Hgrt/uuc2238dXagXGHTMLed3SuXX8AgDXoH53nrsYRbfwyM0Pypsld3rbonJyqtkPV8KOvPwDAGnSIznEkrUpdxRg6N89cLgyuJieJS21Okx2j8ymsPwDAGjRG52CHctBzclRmD3g8Qzxn3G3w81xGLGp4rsy0xXUoFh/0T9ZZnGHuHQCAlWiJzocrLr3HXDVPr2mP4pBF3uqFAgDormd0XrJD2TeNJWdru+kBSj21bBrXczqfOwDAXvU8sJGPULWnF/J3jN9v6FYbbfMP1TB/ct22w2vXuWoRgqsL6y/WAwBwFH2+YeNyKhXNvTk3Q/Iuc+/URrF8RMtHw/Gl+GVt/cma8+UNLgX3nVvPw3zuAACnoGd0HlxKBqaqqJRMsXNv5o1nq+qcfFlbf3A1Hpu8Otkn83LfnzsAwCnoE53HySnIW80RdvLWg6vFGTLzJM0F3OYnSta/pPjM2MkcXHy5188dAOAUdIjOc3GwNqXNvZO/mu9WfITmUVVZcxAWk6uxJHRWddhWNXmXQ37uAACnoNuBje2lcTqMO+/2qQ12g7HJQNmQUMc950qN7xXfOhmFa1PmZP1B57kPJXj2fX/uAACnoOdZ5yBNxtkoTorxrRtyZO0kk/E3fthAMHmmsIaUGafzcfGDUXF0PsznDgBwCvoc2NgNVXPhbJCQ4vQWpLHgnWJU3eyk3snOk7fOvDOn2LOq/rjsuXXbhOl8PPmg59xdBp3nKhlUNVdqUD8AwInofGCjvY7WQ8xxLpy8Gncr3nSzk78bCs5UmB+e6Z+MzoPnyvywnKwMANwiPaNzcis06BYPnLz13I5msIu5JDoXY+iSJ0rWnyw1X/Nk58wPQdnj4osr0/zUAACH0Tk6V72/e3X3z2LnuXfiq7XdxldrByY7bMNiQ7AeZM3i8+YL3v2hmInjqYKryc8dAOAUHDk6Twa1qNyZcLn9M7N/2Radk1PlOwxCcyYZF3WJznNxfO4zOsDnDgBwCo4WnQeJcPBzfqrJkFe8dbLyyzA3Z7T9TSAzNn+72ui8+8Pk2CXRue1zBwA4BY3ReXI3NLlpOpmQipl4bv81yGGT08Z1Du4yDnZB/8y0c08RLMJkz8lum/THEdQznmTJjcbdMo+cfGoAgANric6zczWdec33qZ1kST2Ht7DafTzU5Jz5fH+wzx0A4DAOEZ0b+vdNVG2zHT3Vnex6AgCsU+cDG3Pdkv+zfjCweMfsQ7Zuf8ZhNFbV+cDrCQBAg26/JljMf3HUS4bjhvyXH5IPo+NLVS8zcx5mPQEAyOsZnSev5qNeqtzc/nHeePKqzpmXwQpkZtjregIAkNcnOsc5b/fPy5mDBx2j85L++UmqQnltMQdbTwAA8jpE58nN2svEJmjDLunC6Nx2l0wOTg7JRO1DricAAHmdD2xMbnkGOXLwsrh3m5kq6FxMtOOecxm0LTpPThXMv+/1BAAgb7/ReTL5bS/thrnkjmk+OueT99zVoPjL+WxaFfqLxex7PQEAyOsZncfBcS5NjnPhkug81237Z3O6zYfOYs+GqH2A9QQAIG+Pu86bqR3Qcedxn4XRuXjf5OTjIvNja8VLtL/1BAAg7whnnScjYMfoHHTOR+diPbW7yG2l7ns9AQDI2+OBjWKgPNnoXDsw7pBJ2JN3PMB6AgCQd4Rd58n3l0TncYic65yJzsmpajvUDj/MegIAkNcnOg92T2ujXrL/3KUu0TnIzRl9o/PB1hMAgLzG6ByfN+ge9eaOKMQmTzhMHngY7NHG/TPTJqvdzOT1fa8nAAANWqLzcIpRUKuKesXg2OxWRMZMbj6R9QQAWLkO0RkAANZAdAYAgBTRGQAAUkRnAABIEZ0BACBFdAYAgBTRGQAAUkRnAABIEZ0BACBFdAYAgBTRGQAAUkRnAABIEZ0BACBFdAYAgBTRGQAAUkRnAABI+WxG581mU+6U7tZlFAAAt11LdN7smHzz6v3NlLn+Qc+5O17Op9iO0XmyTzCw+bmSo8bvV/WP6wEAINAYnScmuhnXiv0zc2a6bd+pTYf51BjctNi56mVmzsOsMwAAYz2j89yuZ6qOxdG5tsL8XuxmfnN3rnPm5WYn9Ocf+TDrDADA2H53nYOImZmztlsx19berqGYqlDeUMxh1hkAgLH97jrnt0X7bpoWu8V7w0tGxX0a0nbceTyt6AwAsCfdovP07NdHHYqjGsLrOD4mA+hkHp2813j4ZFoNpmpI2w26rzMAAGMdonOQVicjXZxxg8g7vvXkO4UHzk0bP28wZPkTxZUfZp0BABjrvOscpMyqeJrvtvtOMRQO6mlOt1V5t9ihIdTue50BABj7rEXnzNXaKBw8VEPBVURnAIDT0fkbNsbbpcmgeZhd58wkcf84qc/VUNxFztx69519rzMAAGP9o/Ncz6PvOtd2G1+tHRh3yCTsIDrP3aXLOgMAMLbH6FwVNBdG5/FebLDL2xadk1PVdqgdfph1BgBgrE903k2ujXUsiM61u8INWXPfz5UcfrB1BgBgrDE6z50riA8hNO+GBjPM7b/GW8XJOgcTxv0z0xbXIS5+s+d1BgAg0BKdh1P0SGP7mGRuzlsRH4Pc3HdaAACSOkTn6XkXR7SGGZpvKlACAFDU58DG9v3iz+MZkrNljjpkEvBkYaIzAABF3b5hY3Apk0on+8QD49mSR36rigQAgCudo3Nbn3UN7skAABf5SURBVOXRuepk8O4t8r9gBwDAynX7crqMuXmWROfiYY85kzcFAIA5/XedNzf/jZLJDkG2btt1Lg6Mic4AABR9ds46X+78WyHFyH5ZSvAAADDQMzrPHYEohuB8Sg5und91zid1AADY6nnWObpN+l8B3L7MROfxPnFmC1l0BgCgwXG+YSNO0sHwhdOO3xSdAQBI6hCdg0PDk3vAVScxkt0mN5iL+VuGBgAgby+7zkFE3u1TDNlzM4/nGV8N7i46AwDQYF9fTpfpmZ8z3y2Z2if7xKkdAICV29eX02U676NbMftmsjUAAIw1RufxBm18ymLcMym442RJhadNlxHPAwDACrVE5+EUuay5j0gq6QIAcDAdonPLXY8UdpP3bSvvFiX4W1QqAMDp6HZgY/YGy77Fou0gR3CuI3nTtj7BwPh8yLj+pKo6u68/AMCq7OufRJns3xDdkjcdX52M15n8VxUr82PH4Tj/Ml9A3G1/6w8AsAY9o3Px/Ti/xpcKj1H/7wgG902m7c31l3XkO2deJgNuPrgfYP0BANbgENF5fLWqZxxJkxNmJinOkzRXYWx5MUdcfwCANegcnZO5aknIW5Iyi90GHdqmzVSYHFIbtY+1/gAAa9AtOm9G/9TIIOflU+BkdBv/EAzZnTYfQPMxfTw8Lm/8fvHWwVTB/MdafwCANdhjdJ7sn0lgC6Nzcf65m9ZOMhl/g+icD/Ft9c+NOsD6AwCsQefoPHn16NG5GFV3c+eSdJuPlcWezVH7KOsPALAGPaNzJmIeKzq3lRTHxCB/Fy0MoJOlHnH9AQDWoE90TubUhsDaKzoXd22Lk8T94xWYqyGuJ3nr4t0PsP4AAGvQPzoHL/PRbZsmx1u53Xeda7uNr9YOjDtkEnZywYM6+64/AMAaHC46xxFt/DIzQ7Gk7Z+ZXd626JycqrZD1fCjrz8AwBp0iM5xAqtKXcUYOjfPXC4MriYniUttTpMdo/MprD8AwBo0Rudgh3LQc3JUZg94PEM8Z9xt8PNcRixqeK7MtMV1KBYf9E/WWZxh7h0AgJVoic6HKy69x1w1T69pj+KQRd7qhQIA6O440flY2St537byblGgvEWlAgCcjv0e2LhMf6tDMDw4YDBXycLt0trnygysOqpR7Hwi6w8AsCp9vmGjcI9RYmvIXvGQ8dXJeJ3Jf1WxMj92HI7zL/MFxN32t/4AAGvQ8xs25vJonGLn5pncLp19jNbv0JirKpO2N6XfAgxuHbzc5ALu3Krme3ZcfwCANeiz65yJWfkoFue5OB3OTZiZpDhP0lyFsSXFHH39AQDW4HDROZ4hP9uSlFnsNujQNm2mwuSQZNQ++voDAKzBHqPzIOflN1znZpu7+3jI7rRtATS+13h4XN74/eKtg6ninkdZfwCANegWnedy2GUpitX2T6bM2oRXDJHFm24TajB/W35NFn/E9QcAWINDHNg4enQuRtXd1Lsk3eZjZbFnVdQ++voDAKxB/+gcvzxWdK66RTAwuLqbv4sWBtD8gl+KzgAAnRw0OjcE1l7RubiFnHmuTJ1Bhfld5KK26Ly/9QcAWIMTjc7bNDneyu2+61zbbXy1dmDcIZOw9x2da9cfAGANDnfWOY5o45eZGZI3Te7ytkXn5FS1HaqGH339AQDWoEN0jiNpVeoqxtC5eeZyYXA1OUlcanOa7BidT2H9AQDWoDE6BzuUg56TozJ7wOMZ4jnjboOf5zJiUcNzZaYtrkOx+KB/ss7iDHPvAACsREt0Plxx6T3mqnl6TXsUhyzyVi8UAEB3x4nOx8peyfu2lXeLAuUtKhUA4HTs98DGZfpbHYLhwQGDuUoWbpfWPldmYNVRjWLnE1l/AIBV6fMNG4V7jBJbQ/aKh4yvTsbrTP6ripX5seNwnH+ZLyDutr/1BwBYg27ROd5Dnewz6BlfKjxG63dozFWVSdub0m8BBrcOXm5yAXc8wxHXHwBgDfpE5zgXjt/Mh8JiJE1OmJmkOE/SXIWxJcUcff0BANbgcNE53yEOeUtSZm1hbdNmKkwOSUbto68/AMAadIjOwQ7ubs7Lb7hORrfxD8GQ3WmbA2hwr/HwuLzx+8noPDlVstsh1x8AYA32GJ0nO2QS2MLonKxq3L92ksl1yATZ2vxarDzfYU/rDwCwBquIzsWoupt6l6Tbvnk3GbVPYf0BANZgLdG5raT40YL8XbQwgIrOAACHd9Do3BBYe0Xn4hZycZK4fzHL5neRM9qi8/7WHwBgDTpE5/E7cy/z0W2bJsdbud13nWu7ja/WDow7ZBJ2csGDOvuuPwDAGvSPznNX44g2fpmZIXnT5C5vW3ROTlXboWr40dcfAGAN+kTny/ngVZW6ijF0bp65XBhcTU4Sl9qcJvtG58tjrz8AwBo0Rudgh3LQc3JUZg94PEM8Z9xt8HOc/ot1Vj1XZtriOhSLD/on6yzOMPcOAMBKtETnwxWX3mOumqfXtEdxyCJv9UIBAHR3nOh8rOyVvG9bebcoUN6iUgEATsd+D2xcpr/VIRgeHDCYq2Thdmntc2UGVh3VKHY+kfUHAFiVbr8mGN1jlNgaslc8ZHx1Ml5n8l9VrMyPHYfj/Mt8AXG3/a0/AMAadIjOxTwap9i5eSa3S2cfo/U7NOaqyqTtTem3AINbBy83uYA7t6r5nh3XHwBgDfrsOmdiVj6KxXkuTodzE2YmKc6TNFdhbEkxR19/AIA16B+dJzsUZ5i7WrxX8o5thbVNm6kwOSQZtY++/gAAa7DH6DzIefkN18noNv4hGLI7bXMADe41Hh6XN34/E3bzIfXo6w8AsAaH2HWuipjF/smUWZvwiiGyeNNtQg3mb8uvmeKTL/e0/gAAa7CK6FyMqrupd0m6zcfKYs+qqH309QcAWIO1ROeqWwQDg6u7+btoYQAVnQEADu+g0bkhsPaKzsUt5MxzZeoMKszvIhe1Ref9rT8AwBqcaHTepsnxVm73XefabuOrtQPjDpmEve/oXLv+AABr0D86z12NI9r4ZWaG5E2Tu7xt0Tk5VW2HquFHX38AgDXoEJ3jSFqVuooxdG6euVwYXE1OEpfanCY7RudTWH8AgDVojM7BDuWg5+SozB7weIZ4zrjb4Oe5jFjU8FyZaYvrUCw+6J+sszjD3DsAACvREp0PV1x6j7lqnl7THsUhi7zVCwUA0F3P6Lxkh7JvGkvO1nbTA5R6atk0rud0PncAgL3qeWAjH6FqTy/k7xi/39CtNtrmH6ph/uS6bYfXrnPVIgRXF9ZfrAcA4Cj6fMPG5VQqmntzbobkXebeqY1i+YiWj4bjS/HL2vqTNefLG1wK7ju3nof53AEATkHP6Dy4lAxMVVEpmWLn3swbz1bVOfmytv7gajw2eXWyT+blvj93AIBT0Cc6j5NTkLeaI+zkrQdXizNk5kmaC7jNT5Ssf0nxmbGTObj4cq+fOwDAKegQnefiYG1Km3snfzXfrfgIzaOqsuYgLCZXY0norOqwrWryLof83AEATkG3AxvbS+N0GHfe7VMb7AZjk4GyIaGOe86VGt8rvnUyCtemzMn6g85zH0rw7Pv+3AEATkHPs85BmoyzUZwU41s35MjaSSbjb/ywgWDyTGENKTNO5+PiB6Pi6HyYzx0A4BT0ObCxG6rmwtkgIcXpLUhjwTvFqLrZSb2TnSdvnXlnTrFnVf1x2XPrtgnT+XjyQc+5uww6z1UyqGqu1KB+AIAT0fnARnsdrYeY41w4eTXuVrzpZid/NxScqTA/PNM/GZ0Hz5X5YTlZGQC4RXpG5+RWaNAtHjh567kdzWAXc0l0LsbQJU+UrD9Zar7myc6ZH4Kyx8UXV6b5qQEADqNzdK56f/fq7p/FznPvxFdru42v1g5MdtiGxYZgPciaxefNF7z7QzETx1MFV5OfOwDAKThydJ4MalG5M+Fy+2dm/7ItOienyncYhOZMMi7qEp3n4vjcZ3SAzx0A4BQcLToPEuHg5/xUkyGveOtk5Zdhbs5o+5tAZmz+drXRefeHybFLonPb5w4AcAoao/Pkbmhy03QyIRUz8dz+a5DDJqeN6xzcZRzsgv6ZaeeeIliEyZ6T3TbpjyOoZzzJkhuNu2UeOfnUAAAH1hKdZ+dqOvOa71M7yZJ6Dm9htft4qMk58/n+YJ87AMBhHCI6N/Tvm6jaZjt6qjvZ9QQAWKfOBzbmuiX/Z/1gYPGO2Yds3f6Mw2isqvOB1xMAgAbdfk2wmP/iqJcMxw35Lz8kH0bHl6peZuY8zHoCAJDXMzpPXs1HvVS5uf3jvPHkVZ0zL4MVyMyw1/UEACCvT3SOc97un5czBw86Rucl/fOTVIXy2mIOtp4AAOR1iM6Tm7WXiU3Qhl3ShdG57S6ZHJwckonah1xPAADyOh/YmNzyDHLk4GVx7zYzVdC5mGjHPecyaFt0npwqmH/f6wkAQN5+o/Nk8tte2g1zyR3TfHTOJ++5q0Hxl/PZtCr0F4vZ93oCAJDXMzqPg+NcmhznwiXRea7b9s/mdJsPncWeDVH7AOsJAEDeNlTd6b7rvJnaAR13HvdZGJ2L901OPi4yP7ZWvET7W08AAPL2GJ3n+k9GwI7ROeicj87Femp3kdtK3fd6AgCQ1zM6D4JjMVCebHSuHRh3yCTsyTseYD0BAMg7wq7z5PtLovM4RM51zkTn5FS1HWqHH2Y9AQDI29x5drN59s7C6DzYPa2Nesn+c5e6ROcgN2f0jc4HW08AAPI2m6dfeHB5WRud4/MG3aPe3BGF0rOVje9Y7J+ZNlntZiav73s9AQBosLkKzlXReTjFKKhVRb1icGx2KyJjJjefyHoCAKxch+gMAABr0HJgAwAAVmjzwtPVvyYIAAAr9OQUrOgMAAAB0RkAAFJEZwAASBGdAQAgRXQGAIAU0RkAAFJEZwAASBGdAQAgRXQGAIAU0RkAAFJEZwAASNlG5zuiMwAABERnAABI+WxG581mU+6U7tZlFAAAt11LdN7smHzz6v3NlLn+Qc+5O17Op9iO0XmyTzCw+bmSo8bvV/WP6wEAILC58+xm8+yd2ug8MdHNuFbsn5kz0237Tm06zKfG4KbFzlUvM3MeZp0BABjbbJ5+4cHlZZfoPLfrmatjaXSurTC/F7uZ39yd65x5udkJ/flHPsw6AwAwtrkKznvadQ4iZmbO2m7FXFt7u4ZiqkJ5QzGHWWcAAMZ6Rudxestvi/bdNC12i/eGl4yK+zSk7bjzeFrRGQBgT7od2JiZfTP4M+6ZnHD78yA+JgPoZB6dvNd4+GRaDaZqSNsNuq8zAABjmxeeXvprgkFanYx0ccYNIu/41pPvFB44N238vMGQ5U8UV36YdQYAYOxJZuqy6xykzKp4mu+2+04xFA7qaU63VXm32KEh1O57nQEAGPusRefM1dooHDxUQ8FVRGcAgNPRLTqPt3IH7xfqOMiuc2aSuH+c1OdqKO4iZ269+86+1xkAgLH+0Xmu59F3nWu7ja/WDow7ZBJ2EJ3n7tJlnQEAGNtjdK4Kmguj83gvNtjlbYvOyalqO9QOP8w6AwAw1ic67ybXxjoWROfaXeGGrLnv50oOP9g6AwAw1hid584VxIcQmndDgxnm9l/jreJknYMJ4/6ZaYvrEBe/2fM6AwAQaInOwyl6pLF9TDI3562Ij0Fu7jstAABJHaLz9LyLI1rtDLVBWYgEAKBKnwMb2/eLP49nSM6Wv+PCvefx8MHdqw5IAADwmdHtGzYGl+aCbNy5ODA4xpCJztvsO/5zLgQHfweQmAEAVmUb/u50ic5tfTpG5zhJ7765G5TjfD8ZrOVmAIC16ROdJ88wFE81dInOc5fiyYOfg2nHyXvyuQAA+Ezqv+s8Pg4x7hBk66roXDtPsXOx2sk5g9UAAOAzo3N0HofLqs7Fgfvbda7aSC7+9QAAgM+ezZ1nN5tn73SJzpmQ2taheOvxpWIun9xFLm5Rj0Oz6AwAsBKbzdMvPLi87HLWObxN9TdX7C86B/E387eCubEAAHy2ba6C84G/YSNO0sHwzK7w3I7y5c2ILzoDAFClQ3QuRtjJ0w7xnLPl7vkbNuYy/Vwil5sBANajz4GNyQ7FjefMnnHy1nOR97JfdJ67nfQMALASmxee7vZrguOr+Vi5cNc5uRtdHJ6JzkFMBwDgM+xJ5uv75XSZzr26VUX5eId7cnc52AUHAGA9GqPzZOgM9nQz+TUItZN33F6afbbcceRidM7UHN8CAIDPgJboPJwilx33ETGrYnGmQxCjAQBYuQ7R+clcCw4B982pydnabnqAUk8ttcf1nM7nDgCwV90ObFzWRKiq0xpVd4zfb+hWG21rj3ZUzZ9ct+3w2nWuWoTg6sL6i/UAABxFt18TnAxAQaQrV5bLlJmYmJ8/2TMYuwnD/cL6kzXnyxtcCu47t56H+dwBAE5Bz+g8uJQMTFVRKZli597MG89W1Tn5srb+4Go8Nnl1sk/m5b4/dwCAU9AnOo+TU5C3miPs5K0HV4szZOZJmgu4zU+UrH9J8Zmxkzm4+HKvnzsAwCnoEJ3n4mBtSpt7J3813634CM2jqrLmICwmV2NJ6KzqsK1q8i6H/NwBAE5BtwMb20vjdBh33u1TG+wGY5OBsiGhjnvOlRrfK751MgrXpszJ+oPOcx9K8Oz7/twBAE5Bz7POQZqMs1GcFONbN+TI2kkm42/8sIFg8kxhDSkzTufj4gej4uh8mM8dAOAUbCPLnSUHNnZD1Vw4GySkOL0FaSx4pxhVNzupd7Lz5K0z78wp9qyqPy57bt02YTofTz7oOXeXQee5SgZVzZUa1A8AcCI6ROc+dbQeYo5z4eTVuFvxppud/N1QcKbC/PBM/2R0HjxX5oflZGUA4BbpGZ2TW6FBt3jg5K3ndjSDXcwl0bkYQ5c8UbL+ZKn5mic7Z34Iyh4XX1yZ5qcGADiMztG56v3dq7t/FjvPvRNfre02vlo7MNlhGxYbgvUgaxafN1/w7g/FTBxPFVxNfu4AAKdgc+fZzebZO8eKzpNBLSp3Jlxu/8zsX7ZF5+RU+Q6D0JxJxkVdovNcHJ/7jA7wuQMAnILN5ukXHlxeHj46DxLh4Of8VJMhr3jrZOWXYW7OaPubQGZs/na10Xn3h8mxS6Jz2+cOAHAKNlfBuTY6T+6GJjdNJxNSMRPP7b8GOWxy2rjOwV3GwS7on5l27imCRZjsOdltk/44gnrGkyy50bhb5pGTTw0AcGAt0Xl2rqYzr/k+tZMsqefwFla7j4eanDOf7w/2uQMAHEbLgY35uepiUNC/LVEdclRHR183AAAyNi883fJrgnP/R36uW/J/1g8GFu+YnLDYJw6jsarOB143AAA6ehKzuvxD3EEujCPg8nCcj4z5MDq+VPUyM+dh1g0AgOV6RufJq/kImCo3/Xt7wcbtpvRbfcHDBi+DJ83MsNd1AwBguT7ROc5/u39ezhxIaIjOmferzP2VIB/Ka4s52LoBALBch+g8uYl7mdgcbdg9TUbnttkyOTg5JBO1D7luAAAs1/nAxuRWaJAvBy+Le7rJXd5ioh33bAvlyXoCh1k3AACW2290nkyE20u7IS+5kzqZkpPRee5qUOTlfDatCvfFYva9bgAALNczOo8D5VzKHOfFtug8mKE53eZDZ7FnQ9Q+wLoBALDcHnedN1M7o+PO4z7J6FycPzPJZDH5sbXipdjfugEAsNwRzjpPRsOG6By8mY/OxfvW7iLHMtF5rvOSdQMAYLk9HtgoBs2jR+fagcXaigl78o4HWDcAAJY7wq7z5PuHj87JqWo71A4/zLoBALDcNmzd6fhPotRGwGT/uUtV0TnIzRl9o/PB1g0AgOUao3N8DqF7BJw7ujC+Omc8c7F/ZtqgqvETTT5X/uX4/WR/AAC6aInOwylGAa4qAhYDZdGtiIyZ3HzgdQMAoEqH6AwAAGuwufPsZvPsHdEZAABim83TLzy4vBSdAQAgtrkKzqIzAADERGcAAEhxYAMAAFI2Lzzt1wQBAKCs5R/iBgCAFRKdAQAgRXQGAIAU0RkAAFJEZwAASBGdAQAgRXQGAIAU0RkAAFJEZwAASBGdAQAgRXQGAICUbXS+IzoDAEBAdAYAgBTRGQAAUkRnAABI2dx5drN59o7oDAAAsc3m6RceXF6KzgAAENtcBWfRGQAAYqIzAACkOLABAAApmxee9muCAABQ5h/iBgCAFNEZAABSRGcAAEj5/wHC7MocYPbz7QAAAABJRU5ErkJggg==" alt="" />

Java代码

package DRDCWordTemplates;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.Reader;
import java.util.ArrayList;
import java.util.List;
import java.util.regex.Pattern; import org.apache.log4j.Logger;
import org.junit.Test; import bean.Question; /**
* 读取word上传上来的题目时候在最后多出一道空题,读取记事本编辑的上传上来的正常
*
* @author: qlq
* @date : 2017年7月25日上午9:04:12
*/
public class ReadTxtData {
private static Logger log = Logger.getLogger(ReadTxtData.class);
private static List<Question> list = new ArrayList<Question>(); @Test
public void readTxtData() throws Exception {
String str;
FileInputStream fis;
fis = new FileInputStream("E:\\EclipseWorkspace\\FreeMarker\\test.txt"); // 打开文件输入流
BufferedReader in = new BufferedReader(new InputStreamReader(fis, "utf-8")); // 用于保存实际读取的字符数 StringBuffer sb = new StringBuffer();
// 使用循环读取数据
String line = "";
while ((line = in.readLine()) != null) {
if (!line.equals("")) {
sb.append(line);
}
} String all = sb.toString().trim();
/* System.out.println(all);
System.out.println("--------------------------------------");*/
System.out.println(all.trim());
System.out.println("--------------------------------------"); // 分割题,以[题干]分割,注意第一个前面还有一道空的
String ti[] = all.split("\\[题干\\]");
System.out.println(ti.length);
// substring(start,end) 简单理解为从int开始取end-start个
for (int i=1;i<ti.length;i++) {
// 提取题干
System.out.println(ti[i].substring(0, ti[i].indexOf("[类型]")));
// 提取类型
int leixing_start = ti[i].indexOf("[类型]")+4;
int leixing_end = leixing_start+2;
String leixing = ti[i].substring(leixing_start,leixing_end);
System.out.println(leixing);
// 提取ABCD
if(leixing.equals("判断")){ //如果是判断题
// 提取答案,从[答案]后开始,取一个
int daan_start = ti[i].indexOf("[答案]")+4;
String daan = ti[i].substring(daan_start, daan_start+1);
System.out.println(daan);
// 提取解析
int jiexi_start = ti[i].indexOf("[解析]")+4;
String jiexi = ti[i].substring(jiexi_start);
System.out.println(jiexi);
}else{
// 提取ABCD选项:
int a_start = ti[i].indexOf("[A选项]")+5;
int a_end = ti[i].indexOf("[B选项]");
String axuanxiang=ti[i].substring(a_start, a_end);
System.out.println(axuanxiang); int b_start = ti[i].indexOf("[B选项]")+5;
int b_end = ti[i].indexOf("[C选项]");
String bxuanxiang=ti[i].substring(b_start, b_end);
System.out.println(bxuanxiang); int c_start = ti[i].indexOf("[C选项]")+5;
int c_end = ti[i].indexOf("[D选项]");
String cxuanxiang=ti[i].substring(c_start, c_end);
System.out.println(cxuanxiang); int d_start = ti[i].indexOf("[D选项]")+5;
int d_end = ti[i].indexOf("[答案]");
String dxuanxiang=ti[i].substring(d_start, d_end);
System.out.println(dxuanxiang); // 提取答案
int daan_start = ti[i].indexOf("[答案]")+4;
int daan_end = ti[i].indexOf("[解析]");
String daan = ti[i].substring(daan_start, daan_end);
System.out.println(daan);
// 提取解析
int jiexi_start = ti[i].indexOf("[解析]")+4;
String jiexi = ti[i].substring(jiexi_start);
System.out.println(jiexi);
}
} } }

结果:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAXoAAAGWCAIAAAD5RN8+AAAYM0lEQVR4nO3dTXbqPBKAYa+LBbEeVsOol9A7yKgnvYSeVg8S+GxJVSoBJST5fU5ODj/C2PHNewwxutt//vu/36/7v/4tABBmM3Nzv247l9sPd3EXd53org+zcwMAH0NuAHRCbgB0Qm4AdEJuAHRCbgB0Qm4AdEJuAHRCbgB0Qm4AdEJuAHRCbgB0Qm4AdOLKzc/tsm3bdr33XDMAi3Hk5ud22S6XC7kB8JZqbn5ul+1y+7lfyQ2At1Ry83P7O6ohNwDeVJ/N7zcy5AbAm6zc7BNDbgC8Sc/NMTDkBsCb1Nwcp0vuM3EygJV5T/Pj6AbAm8gNgE74EAOATsgNgE7IDYBOyA2ATsgNgE7IDYBOyA2ATsgNgE6Oudk2vpb9Ar6N3JzmC/i2Um6e923b7/eidEHmP+jkXvvhxcvPlbGXn18oPrtzoxZBbjAGKzfp0FIjbJ7x+cLtUlS2x1yyZ6MWRG4wBldu3jy0UZ/7mBVPs6pjtuxoyFjtl9d8MuQGY1BzU/xVV5fieOVijww6ujEW5VzgCsgNxvCB9248RcjHG49ypse1ebvnIjfAd9VzI7U0tOamOEaLWv5cxhjtruS7zfmDmwm5wRi8udF+vY1hh6epHd1og13boL+XlOfmzeeaErnBGN49uqleNRbVdORibYPyAjC5pfrYZZEbjOGto5tkWPHq/kbjMMRzoxYj49BJq5t942rIDcZQyU0xE625qb56Ko73a3ql9uZzTYncYAzNL6a0oxvnoYc2xlZe9eze6tKKC2n+mU2H3GAMDWcVY1bsVoyB3JwAuxVjIDcnwG7FGMjNCbBbMQZycwLsVoyB3JwAuxVjIDcnwG7FGLzz3aiP950ojG8iNxjDK9Nr5ffuL5Cb4ZAbjKGem/y0XXVZjlOB8QXkBmOo5KapNZ5h+AJygzHUJw9NXiIlAcoPZMjNcMgNxtD2VrHxKUf/RyvRG7nBGOovprbj8Y72Oez9ZUIzFnKDMXj/JwbjTRxyMzpygzG4/jJVfBNnP6B4geiMgtxgDG3/i6b93o1nML6A3GAMDaf5lR/Pgcz4yA3GUHnvxj5IKf5RnL9MDYfcYAx8RPME2K0YA7k5AXYrxkBuToDdijGQmxNgt2IM5OYE2K0YA7k5AXYrxkBuToDdijFY592kQ33z3VTv0k5N1lQH5Of43K/btm2X24/9vPY6r3MaEbnBGOr/R7jn11saY2Q/vHj5uTKO5d+v2+V2u6a9qS2tuGkTV+aJ3GAMbZ+Zym/xH3Fo4/OFa5eL61Bw/w3N/bpt17u6LcX1XLA1Qm4wilemRm89tFGfu/YZiOKxRnXM/XFYo/Wm2Lj8rupWT4PcYAze+W7E/e6MFgh75OeObu7/vIja9UaLl7Yhn0rqEMgNxvCB9248RcjHG49ypqdsVxv5uV2OxzfGFiVPYVyYD7nBGOq5kVoaWnNTHKNFLX8ue8zxBVTaG3/1yA3wcd7cGMcC2rDD09R+z7XBrm34Z/zvX8AT//SG3ABf9O7RTfWqsajWIxd1G55j8jeHj8c3WkSSYhojp0RuMIa3jm6SYcWr+xvzu+w2JTdqMXqOL/0p6tAb7YjGXr2JQ/OL3GAMldzYrzg8V6X9l7b119s5/p3VmLs45AZjaH4xpR3dVA897DG28qqb9+aDq6thbKNMXRxygzHwEc0TYLdiDOTmBNitGAO5OQF2K8ZAbk6A3YoxkJsTYLdiDOTmBNitGAO5OQF2K8aw2uSh6YemlM9netbZefrPBMgNxrDa5KHHzzHcr8cZi+2lFTdt4so8kRuMYbXJQ5OPTRkT+hXXc8HWCLnBKFabPPTQl2x6reR5jQ3x1HMa5AZjWG3y0OS9m+crKS1e2oZ8KqlDIDcYw2qTh+bv3eTvFhub47kwH3KDMaw9eWh63V89cgN83GKTh5KbEnKDMaw1eWjjH8JFKaYxckrkBmNYavJQyd4qTv4spR3R2Ks3cWh+kRuMgclDXYuduzjkBmNg8tDCQoqLnbg45AZj4COaJ8BuxRjIzQmwWzEGcnMC7FaMgdycALsVYyA3J8BuxRjIzQmwWzEGcnMC7FaMYbXJQ0Xkb56bh+eJxU1b5D/9ZwLkBmNYbfLQfNKJ+7XwEc3i0oqbNnFlnsgNxrDi5KH7D2Xq21JczwVbI+QGo1hs8lBXbYqNy++qbvU0yA3GsNbkocrkxPlqaEvzlGg+5AZjWGvyUD031S1KnsK4MB9ygzGsNXmoLzf7y9qKkRvg4xabPPTndrHevCE3wBetNnno33R+vj+Ei1JMY+SUyA3GsNrkoSKSzCC6f22lHdHYqzdxaH6RG4yByUNdi527OOQGY2Dy0MJCiouduDjkBmPgI5onwG7FGMjNCbBbMQZycwLsVoyB3JwAuxVjIDcnwG7FGMjNCbBbMQZycwLsVoxhrclDD7OGbsmnp5q2yH/6zwTIDcaw1uShySfC79ckOfbSips2cWWeyA3GsNbkodkEFNqMFNp6LtgaITcYxVqTh+Z1KfWm2Lj8rupWT4PcYAzLTx76N3uxFi9tQz6V1CGQG4xh+clDD5OlG1uUPIVxYT7kBmNYffLQ4y3+6pEb4OPWmjy09lYxuQG+aK3JQ491+T0LJ5/NL7+QFNMYOSVygzGsNXloeppf+idw7YjGXr2JQ/OL3GAMTB7qWuzcxSE3GAOThxYWUlzsxMUhNxgDH9E8AXYrxkBuToDdijGQmxNgt2IM5OYE2K0YA7k5AXYrxkBuToDdijGQmxNgt2IM00we6lnOa+fveGjrXB3TNCAKucEYppk81LM+++/GOlR75Lklv7G4PjbjJ/ZJ5AZjmGny0K3WLPv21sH2um3HtDVtyAvr+RZygzFMM3no/qq9Ps72Vdfcv5lJejwr0681Qm4wipkmDy0upHrV5smQUQr7qr0V/ZAbjGHKyUP9K6Nutv6OePIU+Qrvfyz5yogSnXxV+yE3GMNkk4c618dejujlSjaqGBR/MrSt6N0dcoMxzDR5aHV9rO3Uc2OMz7/n2+Jfma6JOT4xucEIZpo89HnV84zaCtiblgx4fjdWyXgiY6OclfwMcoMxTDZ5aHFlnHcVn8LITfLY4kOatkj7IYQjNxjDrJOHVnthL9OTm+J3yXJjt7j4wN7FITcYw5STh1YDlz+jvQ5Nz7WVfkTFW4zBxeeKQm4wBj6ieQLsVoyB3JwAuxVjIDcnwG7FGMjNCbBbMQZycwLsVoyB3JwAuxVjIDcnwG7FGN7NjX3OS3Vk9fwX/2kyxsk1xjpop9sshdxgDIG5ye+tnhSXX97MM5KLiSkuIb9x/co8kRuM4ZXc+I84jPHPu/bDipfzq8VVql7QblwfucEY6rn5uV22bbveSw9+6R+x8apHa5Y9xr6wZZ+TeHnNZ0VuMIaP5UYLhD3yg0c3xuFVvhy7bqshNxjD6+/deIqQF8R4lDM9xspo359jjOOglZEbjOHF3BRf7xSH2WO0V0l5JprGJLckY4TcAN/w4lvFcvyN1V6VVI9utMGuVVcWbhzFcHQDfNHr7900Hd3kaXherh65qKtuHt3YK0lugP565Ca/y25TcqMWI+PoJnmgsT7kBugm8K3i6qsne4FN4/PcGCtJboCveDc3zkMPbYxNe97iMcv+3uJd+b35gDWRG4yBj2ieALsVYyjlhq8lv4BvIzen+QK+7ZgbAAhDbgB0Qm4AdEJuAHSi5kY7bU9dkH6v51SX6tk3zpN07FN7jPUHEM06uin+xmq/uk0xsh9evPxcGXv5+YXiszs3CsAH/eXm+3+m5WuELyASueFr9wVEOuZmf0f24sJ4reF55WKP9Fy21yF5uvzFV/GxvID6Q24QT82NuN+78RQhH288ypkej/1zkRsLuUG8em6klobW3BTHeN6+rY7R7kq+26o/sjWRG8Tz5kb79TaGFReVP6qwTo3/7vPxxTUsLva8fUmQG8R79+imetVYVNORi7UNpZZpTTQee2rkBvHeOrpJhhWv7m80DkM8N2oxMg6dtLrZN54RuUG8Sm6KmWjNTfXVU3G8X9MrtTefa1nkBvGaX0xpRzfOQw9tjK286tm91aUVF9Lw01oYuUE8Kzc4Ef4BIB65gYiQG/RAbiAi5AY9kBuICLlBD+QGIkJu0AO5gYiQG/RAbiAi5AY9uHJjnJyindSHyZAbxPPmxjhZLjkbkNxMidwgXj03+Wm76rIcpwJjUOQG8Sq5aWqNZxgGRW4Qrz55aPISKQlQfiBDbqZEbhCv7a1i41OO/o9WYkTkBvHqL6b2rSmmpPiZ7ODVxqeRG8Tz/k8Mxps45GYF5AbxXH+ZKr6Jsx9QvEB0ZkJuEK/hrGJ7hqr8kIfczITcIF7DaX7aXcKBzALIDeJV3ruxD1KKfxTnL1NTIjeIx0c0ISLkBj2QG4gIuUEP5AYiQm7QA7mBiJAb9EBuICLkBj2QG4gIuUEP5AYiQm7Qg3XeTTrUN99N9S7t1GRNdUB+js/9um3bdrn9vLxFpzuNiNwgXv3/CPf8ektjjOyHFy8/V8ax/Pt1u9xu17Q3taUVN23xyjyRG8Rr+8xUfov/iEMbny9cu1xch4L7b2ju12273tVtKa7nSVsj5AY9vDI1euuhjbFY4ym0Y43qmPvjsEbrTbFx+V3VrV4KuUE873w34n53RguEPfJzRzf3f15E7XqjxUvbkE8ldRrkBvE+8N6Npwj5eONRzvSU7WojP7fL8fjG2KLkKYwLayI3iFfPjdTS0Jqb4hgtavlz2WOOL6DS3virR26Aj/PmxjgW0IYVF5U/qrBOjf/ud+N//wKe+Kc35EZFbhDv3aOb6lVjUa1HLuo2PMfkbw4fj2+0iCTFNEYui9wg3ltHN8mw4tX9jflddpuSG7UYPceX/hR16I12RGOv3uKh+UVuEK+SG/sVh+eqtP/Stv56O8e/sxrrF4fcIF7ziynt6KZ66GGPsZVX3bxX2xZjNYxtlOWLQ24Qj49oQkTIDXogNxARcoMeyA1EhNygB3IDESE36IHcQETIDXogNxARcoMeyA1EhNygh9UmD00/NKV8PtOzzs7TfxZBbhBvtclDj59juF+PMxbbSytu2uKVeSI3iLfa5KHJx6aMCf2K63nS1gi5QQ+rTR566Es2vVbyvMaGeOq5FHKDeKtNHpq8d/N8JaXFS9uQTyV1GuQG8VabPDR/7yZ/t9jYHM+FNZEbxFt78tD0ur965Ab4uMUmDyU3ryI3iLfW5KGNfwgXpZjGyGWRG8RbavJQyd4qTv4spR3R2Ku3eGh+kRvEY/JQ12LXLw65QTwmDy0spLjYxYtDbhCPj2hCRMgNeiA3EBFygx7IDUSE3KAHcgMRITfogdxARMgNeiA3EBFygx7IDUSE3KCH1SYPFZG/eW4enicWN22R//SfRZAbxFtt8tB80on7tfARzeLSipu2eGWeyA3irTh56P5Dmfq2FNfzpK0RcoMeFps81FWbYuPyu6pbvRRyg3hrTR6qTE6cr4a2NE+J1kRuEG+tyUP13FS3KHkK48KayA3irTV5qC83+8vaipEb4OMWmzz053ax3rwhNypyg3irTR76N52f7w/hohTTGLkscoN4q00eKiLJDKL711baEY29eouH5he5QTwmD3Utdv3ikBvEY/LQwkKKi128OOQG8fiIJkSE3KAHcgMRITfogdxARMgNeiA3EBFygx7IDUSE3KAHcgMRITfogdxARMgNelhr8tDDrKFb8umppi3yn/6zCHKDeGtNHpp8Ivx+TZJjL624aYtX5oncIN5ak4dmE1BoM1Jo63nS1gi5QQ9rTR6a16XUm2Lj8ruqW70UcoN4y08e+jd7sRYvbUM+ldRpkBvEW37y0MNk6cYWJU9hXFgTuUG81ScPPd7irx65AT5urclDa28VkxsVuUG8tSYPPdbl9yycfDa//EJSTGPkssgN4q01eWh6ml/6J3DtiMZevcVD84vcIB6Th7oWu35xyA3iMXloYSHFxS5eHHKDeHxEEyJCbtADuYGIkBv0QG4gIuQGPZAbiAi5QQ/kBiJCbtADuYGIkBv0QG4gIuQGPUwzeahnOa+dv+OhrXN1TNOAbyI3iDfN5KGe9dl/N9ah2iPPLfmNxfWxGT+x3sgN4s00eehWa5Z9e+tge922Y9qaNuSF9QxHbhBvmslD91ft9XG2r7rm/s1M0uNZmbFaI+QGPcw0eWhxIdWrNk+GjFLYV+2tGAu5QbwpJw/1r4xGK9d+wHPJyQrvfyz5yogSnXxVx0JuEG+yyUOd62MvR/RyJRtVDIo/GdpWjNgdcoN4M00eWl0fazv13Bjj8+/5tvhXZrjE7JEbxJtp8tDnVc8zaitgb1oy4PndWCXjiYyNclayH3KDeJNNHlpcGedd2qblz7VfVL7y/twUN3+syjyRG8SbdfLQai/sZXpyU/wuWW7sFhcfOGJxyA3iTTl5aDVw+TPa69D0XMnSjPHG4OJzfRO5QTw+ogkRITfogdxARMgNeiA3EBFygx7IDUSE3KAHcgMRITfogdxARMgNeiA3EBFygx7ezY19zkt1ZPX8F/9pMsbJNcY6aKfbnA65QbzA3OT3Vk+Kyy9v5hnJxcQUl5DfSGUOyA3ivZIb/xGHMf55135Y8XJ+tbhK1QvajRAhN+ihnpuf22Xbtuu99OC3D4iczbLH2Be27HMSL6/5ysgN4n0sN1og7JEfPLoxDq/y5dh1OyNyg3ivv3fjKUJeEONRzvQYK6N9f44xjoPOjtwg3ou5Kb7eKQ6zx2ivkvJMNI1JbknGCLnJkRvEe/GtYjn+xmqvSqpHN9pg/2rkCzeOYji6UZEbxDvmhq+TfwGRyA1fuy8g0l9u/vPf/93/9e+2R27192WKtzsX2DQ+eTFlr6QxAECcd3OjvYNbfa9Xu117GyhfWrIm+3uLd+X35gMAxHk9NwDQhNwA6ITcAOiE3ADoJMvN1/8Wy9d3v4Aw5Iav4xcQRskNTohdj2BqbrTT9tQF6fd6TnWpnn3jPEnHPrWn9tM4N3KDYNbRTfE3VvvVbYqR/fDi5U2JYHGYsUBji87eI3KDYA0vpoqN8Bxx2OPzhdulqGyPuWTPRp0XuUEwV27ePLRRn/uYFU+zqmO27GjIWO2X13xN5AbBrPdu/EcW9vFI61HMB49ujEU5F3gi5AbBPvDejacI+XjjUc70uDZv91zkpoLcIFg9N1JLQ2tuimO0qOXPZYzR7kq+27w/ufWQGwTz5kb79TaGHZ6mdnSjDXZtg/5eUp6bN59rZeQGwd49uqleNRbVdORibUOpZVoTjceeHblBsLeObpJhxav7G43DEM+NWoyMQyetbvaNJ0VuEKySm2ImWnNTffVUHO/X9ErtzedaGblBsOYXU9rRjfPQQxtjK696dm91acWFtP/QFkVuEIyPaOKBXY9g5AYP7HoEIzd4YNcjGLnBA7sewcgNHtj1CEZu8MCuRzBygwd2PYLVc+M5XYVTWlZAbhDMNQGF6H3Jx9jn5mFc5AbBKkc3STu0yhTHYDLkBsHaXkwVc6ONwWTIDYLVP6KZfLjpeVc+IL/xK5uEF5EbBIs6uqE18yE3CPaB3BTfuyE38yE3CFb5nxi0ORz2oZGsPkJuZkRuEIwXU3ggNwhW/0N4+WHkZj3kBsHezY321ytyMx9yg2CuyUMPDzD/yF083sEcyA2C8RFNPLDrEYzc4IFdj2DkBg/segQjN3hg1yMYucEDux7ByA0e2PUIRm7wwK5HMOszU+lQ/i2ujdwgmGvyUOOzmlgHuUGwhhdTJGZx5AbBXLnh0OYUyA2CVea7OQzl3+LayA2C8d4NHsgNgrk+Ec5hzimQGwTz5oZDm/WRGwTj6AYP5AbBOLrBA7lBsPp/aycc3ZwEuUGw5hdTHN0si9wgGB/RxAO7HsHIDR7Y9QhGbvDArkcwcoMHdj2CkRs8sOsRjNzggV2PYOQGD+x6BPPOd6M+3nEGoPaZcuOsZe0k5vwMIHtMMtL8UZweuUGwd3OT31v8bbcvF89d1h6SdMpeLJVpQG4QrDK9lueI429B+phqbopXC+uqV8aoGLzIDYLVj25e+6U1XvVozbLH2Be2LJEvr/l5kRsEa8uNFgh75AePbozDq3w5dt2QIjcIVsmNpwh5QYxHOdNTXtfdwvPvzzHGcRAs5AbBXBNQ/DO6lpviGO1VUp6JpjHJLckYITetyA2CVf4XTe2FyWERtaMbbbBr/ZSFG0cxHN28iNwg2CdfTOVpeF6uHrmo62ce3dgrSW7akBsEU3LD12m/gDDkhq/jFxDm/2lMDocwyNoUAAAAAElFTkSuQmCC" alt="" />

Java读取txt文件——(二)的更多相关文章

  1. Java读取txt文件信息并操作。

    一.java读取txt文件内容 import java.io.BufferedInputStream; import java.io.BufferedReader; import java.io.Fi ...

  2. Java读取txt文件

    package com.loongtao.general.crawler.slave.utils; import java.io.BufferedReader; import java.io.File ...

  3. java 读取TXT文件的方法

    java读取txt文件内容.可以作如下理解: 首先获得一个文件句柄.File file = new File(); file即为文件句柄.两人之间连通电话网络了.接下来可以开始打电话了. 通过这条线路 ...

  4. java读取TXT文件的方法

    java读取txt文件内容.可以作如下理解: 首先获得一个文件句柄.File file = new File(); file即为文件句柄.两人之间连通电话网络了.接下来可以开始打电话了. 通过这条线路 ...

  5. java读取txt文件内容

    package read; import java.io.BufferedReader; import java.io.File; import java.io.FileReader; public ...

  6. java读取txt文件的2中方法---并将内容(每一行以固定的字符分割切成2段)存到map中去

    #java读取txt文件的第一种方法 /** * 方法:readTxt * 功能:读取txt文件并把txt文件的内容---每一行作为一个字符串加入到List中去 * 参数:txt文件的地址 * 返回: ...

  7. Java读取txt文件、excel文件的方法

    Java读取txt文件.excel文件的方法 1.读取txt文件 public static String getFileContent(String filePath,String charset) ...

  8. Java 读取TXT文件的多种方式

    1).按行读取TXT文件package zc;import java.io.BufferedReader;import java.io.File;import java.io.FileNotFound ...

  9. Java 读取txt文件生成Word文档

    本文将以Java程序代码为例介绍如何读取txt文件中的内容,生成Word文档.在编辑代码前,可参考如下代码环境进行配置: IntelliJ IDEA Free Spire.Doc for Java T ...

  10. JAVA读取TXT文件、新建TXT文件、写入TXT文件

    1.创建TXT文件 按照正常的逻辑写就好 先定义一个文件给定一个路径——>判断这个路径上这个文件存不存在——>若不存在则建立,try/catch根据程序提示自动生成就好 2.读取TXT文件 ...

随机推荐

  1. python中json.load()、json.loads()、json.dump()、json.dumps()的区别

    json.load()从文件中读取json字符串 json.loads()将json字符串转换为字典类型 json.dumps()将python中的字典类型转换为字符串类型 json.dump()将j ...

  2. BZOJ5312 冒险(势能线段树)

    BZOJ题目传送门 表示蒟蒻并不能一眼看出来这是个势能线段树. 不过仔细想想也并非难以理解,感性理解一下,在一个区间里又与又或,那么本来不相同的位也会渐渐相同,线段树每个叶子节点最多修改\(\log ...

  3. Android自动化测试探索

    Android自动化测试探索 前言 通常来说,我们开发完成产品之后,都是由测试组或者是我们自己点一点,基本上没有问题了就开始上线.但是,随着时间的堆叠,一款产品的功能也越来越多.这时,我们为了保证产品 ...

  4. AT1219 歴史の研究 解题报告

    AT1219 歴史の研究 题意 给定一个长为\(n\)的序列\(\{a\}\),询问区间\(a*cnt_a\)的最大值,即某个值乘上出现次数 回退莫队板子 只右移右指针和左指针每次回到块结尾即可. C ...

  5. 【bzoj3938】 Robot

    http://www.lydsy.com/JudgeOnline/problem.php?id=3938 (题目链接) 题意 给出数轴上$n$个点,有$m$个操作,在时间$t$让一个点以一定的速度移动 ...

  6. [bzoj4709][柠檬]

    bzoj4709 思路 首先,最优秀的分法一定是每段两端都是这一段中最多的那个,否则可以把不是的那个踢出去单独成段肯定会更优秀.然后就成了将这个序列分段,保证每段两端元素相同的最大收益和. 用a[i] ...

  7. 求n(n>=2)以内的质数/判断一个数是否质数——方法+细节优化

    #include <stdio.h> #include <stdlib.h> //判断i是否质数,需要判断i能否被(long)sqrt(i)以内的数整除 //若i能被其中一个质 ...

  8. 一个程序如何在调试时退出调试或退出while循环

    1.退出调试 按Ctrl+C 2.退出while循环 比如 #include <stdio.h> #include <stdlib.h> int main() { long a ...

  9. CalISBN.java

    /****************************************************************************** * Compilation: javac ...

  10. Hadoop+HBase+Spark+Hive环境搭建

    杨赟快跑 简书作者 2018-09-24 10:24 打开App 摘要:大数据门槛较高,仅仅环境的搭建可能就要耗费我们大量的精力,本文总结了作者是如何搭建大数据环境的(单机版和集群版),希望能帮助学弟 ...