/*
埃拉托色尼算法 
问题描述:定义一个正整数n,求0-n范围以内的所有质数 
@date 2017-03-06
@author Johnny Zen   
*/ 
#include<iostream>
#include<math.h>
using namespace std;
 
void Eratosthenes(int arrs[],int n){   //arrs暂时设置为空指针,意为在返回目标数组(n范围内的所有质数数组) 
  int sqr,j;
  for(int i=2;i<n;i++){
    arrs[i] = i;     //目标数组初始化 
    sqr = sqrt(i);   //sqr 向下取整   注意:变量名sqr不能取名为sqrt,否则发生关键字冲突,无法编译! 
    for(int k = 2;k<=sqr;k++){   //因为: 在sqrt(i)以后的含小于sqrt(i)倍数关系的数据都已经被清除,剩下的均为质数 
      if(arrs[k]!=0){
        j = pow(k,2);
        while(j<=n){
          arrs[j] = 0;   //因数置0
          j = j+k;       //最为巧妙处: 加法   k*k   k*(k+1)    k*(k+2)  ----k*(k+n) 
        }
      }
    }
  }
  //输出
  for(int i = 2;i<n;i++)
    if(arrs[i]!=0)
      cout<<arrs[i]<<'\t'; 
 
int main(){
  int n,*arrs;
  cout<<"请输入数N:";
  cin>>n;
  arrs = new int[n];  //创建数组 
  
  Eratosthenes(arrs,n);
  
  delete [] arrs; 
  return 0;

[C++]埃拉托色尼算法的更多相关文章

  1. NOI-OJ 1.12 ID:10 素数对

    整体思路 本题涉及大量素数的使用,故使用埃拉拖色尼算法提前计算出素数表可以避免大量.重复的计算. 判断素数对很简单,使用两个变量p1和p2代表素数表中的第一个和第二个素数,依次在表中向后移动,判断p2 ...

  2. 常见素数筛选方法原理和Python实现

    1. 普通筛选(常用于求解单个素数问题) 自然数中,除了1和它本身以外不再有其他因数. import math def func_get_prime(n): func = lambda x: not ...

  3. 算法笔记_012:埃拉托色尼筛选法(Java)

    1 问题描述 Compute the Greatest Common Divisor of Two Integers using Sieve of Eratosthenes. 翻译:使用埃拉托色尼筛选 ...

  4. 埃拉托色尼筛法(Sieve of Eratosthenes)求素数。

    埃拉托色尼筛法(Sieve of Eratosthenes)是一种用来求所有小于N的素数的方法.从建立一个整数2~N的表着手,寻找i? 的整数,编程实现此算法,并讨论运算时间. 由于是通过删除来实现, ...

  5. 算法题解之math类题

    Bulb Switcher 灯泡开关 思路:除了平方数以外,其他所有位置的灯泡最终都被开关了偶数次,因此最终都为0.问题等价于求1~n中平方数的个数. public class Solution { ...

  6. 程序语言的奥妙:算法解读 ——读书笔记

    算法(Algorithm) 是利用计算机解决问题的处理步骤. 算法是古老的智慧.如<孙子兵法>,是打胜仗的算法. 算法是古老智慧的结晶,是程序的范本. 学习算法才能编写出高质量的程序. 懂 ...

  7. php取两个整数的最大公约数算法大全

    php计算两个整数的最大公约数常用算法 <?php//计时,返回秒function microtime_float (){ list( $usec , $sec ) = explode ( &q ...

  8. 【模板】埃拉托色尼筛法 && 欧拉筛法 && 积性函数

    埃拉托色尼筛法 朴素算法 1 vis[1]=1; 2 for (int i=2;i<=n;i++) 3 if (!vis[i]) 4 { 5 pri[++tot]=i; 6 for (int j ...

  9. B树——算法导论(25)

    B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...

随机推荐

  1. Bootstrap输入框组

    前面的话 有时,我们需要将文本输入框(input group)和文件或者小icon组合在一起进行显示, 我们称之为addon.也就是通过在文本输入框 <input> 前面.后面或是两边加上 ...

  2. LOJ121 动态图连通性(LCT)

    用LCT维护一下删除时间的最大生成树即可.当然也可以线段树分治. #include<iostream> #include<cstdio> #include<cmath&g ...

  3. Partition Numbers的计算

    partition numbers的定义 A000041 就是将正整数n分为k(\(1\le k\le n)\)个正整数相加,即\(n=a_1+a_2+...+a_k\)且\(a_1\le a_2\l ...

  4. 自学Linux Shell8.1-linux文件系统概述及操作

    点击返回 自学Linux命令行与Shell脚本之路 8.1-linux文件系统概述及操作 1. linux支持的文件系统 Windows常用的分区格式有三种,分别是FAT16.FAT32.NTFS格式 ...

  5. JAVA 泛型方法 和 静态方法泛型

    /* //  泛型方法和静态方法泛型 泛型类定义的泛型 在整个类中有效 如果被方法使用 那么泛型类的对象明确要操作的具体类型后,所有要操作的类型就已经固定 为了让不同方法可以操作不同类型  而且类型还 ...

  6. C++类间相互引用

    两个类相互包含引用的问题 不管是下文中提到的例子,还是任何情况,使得class A的头文件需要include class B的头文件,class B的也要引用A的头文件,这种状况下,貌似会出现有一个类 ...

  7. 洛谷P1135 奇怪的电梯 BFS例题

    好,这是一道黄题.几个月前(2017.10.29)的我拿了可怜的20分. 这是当年的蒟蒻代码 #include <cstdio> #include <iostream> #in ...

  8. A1095. Cars on Campus

    Zhejiang University has 6 campuses and a lot of gates. From each gate we can collect the in/out time ...

  9. JDBC详解(二)

    一:Statement与PreparedStatement的注意点 存在sql注入的危险,如果用户传入的id为“2 or 1=1”,将删除表中的所有数据.而PreparedStatement有效的防止 ...

  10. bug6 项目检出JRE问题(Unbound classpath container: 'JRE System Library [JavaSE-1.7]' in project 'idweb')

    项目从SVN检出到工作空间后报了很多错误,其中很明显就是一些jar的问题,没有相关的jar或版本问题,看到最后的错误Unbound classpath Container: 'JRE System L ...