BZOJ 1833 数字计数 数位DP
做的第一道数位DP题,听说是最基础的模板题,但还是花了好长时间才写出来。。。。。
想深入了解下数位DP的请点这里
先设dp数组dp[i][j][k]表示数位是i,以j开头的数k出现的次数
有
数位dp的题一般都会用到前缀数组,题目要求我们求b-a这个区间里各个数码出现的次数,我们可以分别求出(0,b)和(0,a-1)然后相减即可
具体分析请看代码,写的还算详细
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll dp[][][];
ll ans[];//用来储存每个数码出现的次数
ll bin[];//表示i位数中数码i出现的次数
ll d[];//这个用来存储数的每一位
void rule(){
bin[]=;
for(int i=;i<;i++) bin[i]=bin[i-]*;
for(int i=;i<;i++) dp[][i][i]=;
for(int i=;i<=;i++){
for(int j=;j<=;j++){
for(int z=;z<=;z++){
for(int k=;k<=;k++)
dp[i][j][z]+=dp[i-][k][z];//比如i=2,j=2时,所求数字范围应该是200-299,这一步把0-99中各数码出现次数加进去
dp[i][z][z]+=bin[i-];//这一位这是把200-299总共出现了100次的2给加进去
}
}
}
}
void solve(ll x,int flag){
ll tmpx=x;//存储传进来的x
int cnt=;//记录x的位数
memset(d,,sizeof(d));
while(x){
d[++cnt]=x%;
x/=;
}
for(int i=;i<cnt;i++){//这一步是最高位为0的,这些数都不会受到x的上限限制,都可以直接加进来
for(int j=;j<=;j++){
for(int k=;k<=;k++)
ans[k]+=dp[i][j][k]*flag;
}
}
int tmpt=cnt;
while(cnt){//可以举个456的例子来仔细分析一下
for(int i=;i<d[cnt];i++){//注意这里是小于不是等于,保证上限不被取到,在后面再被处理
if(!i&&cnt==tmpt) continue;//这种情况在最高位为0时已经统计过了,不能重复
for(int j=;j<=;j++){
ans[j]+=dp[cnt][i][j]*flag;//不是上限的时候都直接加
}
}
ans[d[cnt]]+=(tmpx%bin[cnt]+)*flag;cnt--;//随着while循环,上限一步步的被处理
}//简述一下过程(456),就是第一个for处理了0-399,然后把首位4的57次加上,第二个for,处理的0-49......就这样一步步往下
}
int main(){
ll a,b;scanf("%lld%lld",&a,&b);
rule();
solve(b,);solve(a-,-);//1和-1是符号位,分别是加和减
for(int i=;i<;i++)
printf("%lld%c",ans[i],i==?'\n':' ');
return ;
}
BZOJ 1833 数字计数 数位DP的更多相关文章
- UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)
题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...
- 1833: [ZJOI2010]count 数字计数——数位dp
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...
- 【BZOJ-1833】count数字计数 数位DP
1833: [ZJOI2010]count 数字计数 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 2494 Solved: 1101[Submit][ ...
- [BZOJ 1833] 数字计数
Link: BZOJ 1833 传送门 Solution: 比较明显的数位DP 先预处理出1~9和包括前导0的0的个数:$pre[i]=pre[i-1]*10+10^{digit-1}$ (可以分为首 ...
- bzoj1833: [ZJOI2010]count 数字计数(数位DP+记忆化搜索)
1833: [ZJOI2010]count 数字计数 题目:传送门 题解: 今天是躲不开各种恶心DP了??? %爆靖大佬啊!!! 据说是数位DP裸题...emmm学吧学吧 感觉记忆化搜索特别强: 定义 ...
- [bzoj1833][ZJOI2010]count 数字计数——数位dp
题目: (传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833] 题解: 第一次接触数位dp,真的是恶心. 首先翻阅了很多很多一维dp,因 ...
- 【题解】P2602 数字计数 - 数位dp
P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数 \(a\) 和 \(b\) ,求在 \([a,b]\) 中的所有整数中,每个数码(digit)各出现了多少次. 输入格式 输入文件中 ...
- bzoj1833: [ZJOI2010]count 数字计数 数位dp
bzoj1833 Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. O ...
- Luogu P2602 [ZJOI2010]数字计数 数位DP
很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...
随机推荐
- hihoCoder week7 完全背包
完全背包 题目链接 https://hihocoder.com/contest/hiho7/problem/1 #include <bits/stdc++.h> using namespa ...
- centos7重新调整分区大小
As others have pointed out, XFS filesystem cannot be shrunk. So your best bet is to backup /home, re ...
- 【Hadoop 分布式部署 六:环境问题解决和集群基准测试】
环境问题: 出现Temporary failure in name resolutionp-senior-zuoyan.com 的原因有很多,主要就是主机没有解析到, 那就在hadoop的sl ...
- JVM相关笔记
类的加载过程 加载阶段 主要完成以下3件事情:1.通过“类全名”来获取定义此类的二进制字节流2.将字节流所代表的静态存储结构转换为方法区的运行时数据结构3.在java堆中生成一个代表这个类的java. ...
- Google advertiser api开发概述——批量处理
批处理 大多数服务都提供同步 API,要求您发出请求然后等待响应,但 BatchJobService 允许您对多项服务执行批量操作,而无需等待操作完成. 与各服务的特定 mutate 操作不同,Bat ...
- C++中set的用法
set的特性是,所有元素都会根据元素的键值自动排序,set的元素不像map那样可以同时拥有实值(value)和键值(key),set元素的键值就是实值,实值就是键值.set不允许两个元素有相同的键值. ...
- 文档对象模型DOM
文档对象模型 DOM 1 DOM概述 1.1 什么是DOM 文档对象模型 Document Object Model 提供给用户操作document obj 的标准接口 文档对象模型 是表示和操作 H ...
- 折腾了好久的地图缩放 ngui 各种偷懒实现
当时找到一篇cocos2dx 地图缩放的 很遗憾我用不了 也要记录一下 免得以后用ugui可以用 转 http://blog.csdn.net/cocosnode/article/details/ ...
- 【BZOJ】3576: [Hnoi2014]江南乐
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3576 很显然,这是一个multi-nim游戏. 注意:1.一个点的SG值就是一个不等于它的 ...
- WebSocket 教程
转载自:http://www.ruanyifeng.com/blog/2017/05/websocket.html WebSocket 是一种网络通信协议,很多高级功能都需要它. 本文介绍 WebSo ...